• 제목/요약/키워드: Velocity Uniformity

검색결과 203건 처리시간 0.028초

제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향 (Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan)

  • 최충현;이재헌
    • 설비공학논문집
    • /
    • 제13권3호
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

은비가 다른 Bi-2223 팬케이크 코일의 ?치 특성 (Quench Properties of Bi-2223 Pancake Coils with Different Ag/SC Ratio)

  • 장현만;오상수;하홍수;하동우;장국렬;류강식;김상현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.109-112
    • /
    • 1999
  • The normal zone propagation (NZP) velocity and V-I characteristics of two Bi-2223 pancake coils with different Ag/SC ratio were investigated by experiment. Non-uniformity of Ic and broad restive transition was oberserbed in two coils. The NZP velocity of azimuth direction is faster than radius direction, and the NZP velocity of coil with higher Ag/SC ratio is faster than another coil with lower Ag/SC ratio.

  • PDF

Slit-Coater 노즐에서 Photo Resist의 유동 특성 (Flow Characteristics of Photo Resist in a Slit-Coater Nozzle)

  • 김장우
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.37-40
    • /
    • 2004
  • This study presents numerical solutions of three-dimensional laminar flow-field formed by photo resist flow in a slit-coater model. We discuss on the governing equations, laminar viscosities and the computational model applied in our numerical calculation and some results. We prove that the structure of tapered-cavity aid to make uniform pressure-field and boundary effect is an important problem to improve coating uniformity. In view of uniformity improvement, it is necessary to study for the structure of cavity and flow path.

  • PDF

선박용 SCR 시스템의 촉매반응기 내부 유동특성에 관한 수치해석 (A Numerical Analysis on the Flow Characteristics inner Catalytic Reactor for Marine SCR System)

  • 이중섭;서정세;윤지훈;임병주;박창대;정경열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.125-126
    • /
    • 2012
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. Performance of NOx removal in SCR process depends on such various factors as catalyst factors(catalyst composition, shape, velocity, etc.), exhaust gas temperature and velocity distribution. In this study checked flow uniformity with the flow characteristics in the SCR reactor by using STAR CCM+. The pressure drop of experiment and simulation had similar result more than 90% at catalytic Cell. Also, flow uniformity calculated about 0.9036 ant 1st catalytic ind SCR reactor.

  • PDF

전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구 (Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity)

  • 이수윤;신승원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF

전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계 (Design of the long perforated pipe in water treatment process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

DPF의 유동특성에 관한 과도해석 연구 (Study on Transient Analysis for Flow Characteristics in DPF)

  • 신동원;윤천석
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

회전컵 무화기의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer)

  • 진승범;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정 (Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics)

  • 김규범;이정운;이치형
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.273-280
    • /
    • 2015
  • 강변여과수의 수평집수정 시공시 불균질성 지층에 의한 굴착 지연 등은 전체 굴착 공정에 영향을 미칠 수 있다. 본 연구에서는 안성천 지역에서 시공 중인 수평집수정의 굴착 과정에서 심도별로 취득된 입도분석 자료, 균등계수, 곡률계수를 활용하여 실제 굴착 속도를 추정하는 방안을 제시하였다. 균등계수와 곡률계수를 입력인자로 사용한 회귀식을 도출한 후 타 수평집수정에 적용한 결과, 조립질이면서 분급이 양호한 지층에 추정식이 잘 맞는 것으로 나타났다. 본 연구 결과는 중소규모의 하천을 대상으로 개발된 만큼, 향후 대하천 주변의 굴착 정보를 활용하여 추정식을 보완한다면 보다 정확한 설계 및 효율적인 시공 관리가 가능할 것이다.