• 제목/요약/키워드: Velocity Ratio

검색결과 2,692건 처리시간 0.032초

정방형 홈을 가진 회전원주 주위의 유동과 유체력 (Flow and Fluid Force around a Rotating Circular Cylinder with Square Grooves)

  • 강명훈;노기덕;공태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1460-1465
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of $Re=1.0{\times}10^{4}$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from $Re=1.2{\times}10^{4}$ to $Re=2.0{\times}10^{4}$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

  • PDF

정방형 딤플을 가진 회전원주의 유동장 특성 (Flowfield Characteristics of a Rotating Circular Cylinder Having Square Dimpled Surface)

  • 노기덕;강명훈
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.486-492
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of Re=1.0${\times}$10$^4$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from Re=1.2${\times}$10$^4$ to Re=2.0${\times}$10$^4$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

침투시험에서의 콘크리트 표적크기 영향 분석 (Concrete Target Size Effect on Projectile Penetration)

  • 김석봉;유요한
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.154-159
    • /
    • 2015
  • This paper deals with the effect of concrete target size on penetration of projectiles. We investigated the penetration depth and residual velocity of projectiles using the 2-D axial symmetric model. Most analysis were conducted with 13 kg projectile (striking velocity: 456.4 m/s) and concrete target with compressive strength of 39 MPa. This paper provided penetration depth (or residual velocity) versus ratio D/d (target diameter, D and projectile diameter, d). When the bottom of concrete cylinder was constrained, penetration depth converged to limit depth more than the ratio D/d of 36. The residual velocity of projectile with thin concrete target were investigated. The residual velocity was converged to specific velocity more than the ratio D/d of 16.

은비가 다른 Bi-2223 팬케이크 코일의 ?치 특성 (Quench Properties of Bi-2223 Pancake Coils with Different Ag/SC Ratio)

  • 장현만;오상수;하홍수;하동우;장국렬;류강식;김상현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.109-112
    • /
    • 1999
  • The normal zone propagation (NZP) velocity and V-I characteristics of two Bi-2223 pancake coils with different Ag/SC ratio were investigated by experiment. Non-uniformity of Ic and broad restive transition was oberserbed in two coils. The NZP velocity of azimuth direction is faster than radius direction, and the NZP velocity of coil with higher Ag/SC ratio is faster than another coil with lower Ag/SC ratio.

  • PDF

초음파속도법에 의한 고강도 콘크리트의 압축강도 추정에 관한 연구 (Estimating Compressive Strength of High Strength Concrerte by Ultrasonic Pulse Velocity Method)

  • 임서형;강현식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this study is to suggest the non-destructive equation for the estimation of concrete strength by ultrasonic pulse velocity at the Age of 28day compressive strength of $600{\sim}1000kg/cm^2$. For this purpose, selected test variables were water-hinder ratio, replacement ratio of silica fume, binder content, maximum size of coarse aggregate and sand-aggregate ratio. From the results, the average increase or decrease of ultrasonic pulse velocity is 61m/sec for each 1% of moisture content. And the correlation equation between the ultrasonic pulse velocity and the compressive strength of concrete is as follows. $F_c=896.3V_p-3514$ ($R^2$ = 0.81) where, $F_c$ : compressive strength($kgf/cm^2$), $V_p$ : ultrasonic velocity(km/sec).

  • PDF

CFD모사 기법을 이용한 Pump Diffusion Mixer내의 응집체 확산분포에 대한 평가 (Evaluation of Coagulants Dispersion in Pump Diffusion Mixer for Water Treatment)

  • 박영오;박노석;김성수;김기돈;임경호
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.49-63
    • /
    • 2008
  • The objectives of this research were to evaluate the pressurized/the main inlet water flowrate ratio which have been used as the most important parameter for operating the pump diffusion mixer until now, to suggest the alternative operating parameter and the relating criteria if the flowrate ratio was not inadequate. For the objectives of this research, computational fluid dynamics (CFD) simulation was conducted for 21 cases of flowrate ratio in full-scaled pump diffusion mixer. From the results of CFD simulation, the local velocity gradient values were calculated in each case in order to analyze the simulation results in more detail. For verifying CFD simulation, wet test was conducted. The wet test was to measure the factual coagulant dispersion distribution at a distance of 5.4m from deflector. From both results of CFD simulation and wet test, flowrate ratio was inadequate as operating parameter or criteria, on the other hand the pressurized/the main inlet velocity ratio(dimensionless) was useful in predicting the performance of pump diffusion mixer. Also, the injected coagulant could be dispersed evenly in overall cross section on the condition that pressurized/the main inlet velocity ratio(dimensionless) is over at least 20.

벨트 가연기의 공정조건에 따른 장력변화 (Effect of the Processing Condition to the Yarn Tension on the Belt-type Texturing m/c)

  • 이민수;김승진;박경순
    • 한국염색가공학회지
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2004
  • This research surveys the twisting and untwisting tensions according to the various processing conditions of belt type texturing such as draw ratio, 1st heater temperature and velocity ratio. The 1st heater temperature was changed from 1606{\circ}C\; to\; 220^{\circ}C$, draw ratio was changed from 1.6 to 1.9 and velocity ratio was changed from 1.4 to 1.8. The twisting and untwisting tensions are measured with the variation of these processing conditions, in addition, the untwisting tension(T2) and tension ratio(T2/Tl) according to the various processing conditions are analysed with the false twist mechanism which is affected to the physical properties of draw textured yams.

외부식 다단형 슬로트 후드의 효율 향상에 관한 연구 (A Study on Improvement of Ventilation Efficiency of Multi-Stage Slot Hood)

  • 김현석;백남원
    • 한국산업보건학회지
    • /
    • 제3권2호
    • /
    • pp.204-212
    • /
    • 1993
  • This study was conducted to evaluate ventilation efficiency of 4-stage slot hood by variation of slot width, flow rate, hood size and baffle size. The slot velocity, control velocity and plenum velocity were related to slot width and the distance between source of contamination and hood. The results obtained from laboratory experiment for local exhaust ventilation systems were as follows ; 1. When slot widths were constant(equally changed) and the velocity was 6-10 m/s, the slot velocity from 1st slot to 4th slot gradually decreased. As the slot width-to-slot length ratio(WLR) decreased, the slot velocity of each stage increased. But if WLR value was less than 0.04, the slot velocity decreased. 2. When slot velocity exceeded 10 m/s with constant slot widths, the slot velocity of each stage was uniform. 3. When the slot velocity was uniform within 10 m/s and the first slot width was 14-20 mm, the slot width ratio between 1st slot and each of three other slots were 1, 1.25, 1.5 and 3.0, respectively. 4. The slot and plenum velocity were uniform when exhaust flow rate changed from 14 to $19m^3/min$ and there were no hood splitter vanes. 5. When the slot velocity at each stage was uniform, the control velocity at site 30 cm away from hood No.2 increased from 0.15-0.30 to 0.25-0.45 m/s and the control distance from 20 to 30 cm(about 1.5 times).

  • PDF

균일입구유속 조건의 나선관 입구영역의 층류 유동 (LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS)

  • 김영인;박종호
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과 (The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner)

  • 이인수;정지원;차건종;김덕줄
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF