• Title/Summary/Keyword: Velocity Imaging

Search Result 313, Processing Time 0.032 seconds

Subsurface Imaging using Headwave Stacking (선두파 중합을 이용한 천부지층의 영상화)

  • Park Jung-Jae;Ko Seung-Won;Shin Chang-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • For economy and convenience, seismic refraction survey is widely used in surveying for large civil engineering work. The purpose of this study is to obtain the numerical responses of various models using Kirchhoff migration, and to analyze its application to the real data processing. Synthetic traveltime curve was calculated by vidale's algorithm, and various models such as 2 or 3 layer model and irregular topography model are tested to simulate the response of real structure. In order to compare the effect of initial velocity model, true velocity models, inversion results by tomography, smooth velocity models are used as an initial guess. The responses of model data show that the algorithm of this study is more sensitive to initial velocity model than the reflection survey, so choosing a suitable initial velocity model will be the most important thing in real data processing.

An implementation of the continuous wave doppler system for blood flow measurement using the ultrasound (효율적인 혈류 속도 측정을 위한 연속 초음파 도플러 장치의 구현)

  • 박형재;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.516-519
    • /
    • 2001
  • To diagnose a patient's blood vessel disease, apoplexy, hypertension, arteriosclerosis, the blood velocity is very important. Determining the blood velocity methods using ultrasound are Continuous Doppler System and Pulse Doppler System. In using the Pulse Doppler System, we can obtain the position of blood velocity. But it is more complex hardware than Continuous Doppler System and it has low SNR(signal-noise ratio). So in this study, to obtain a believable information we use the Continuous Pulse Doppler System. Thus system have analog part and digital part. In analog part is composed of ultrasound generating part, the amplifying part to amplify the received signal from ultrasound sensor, the demodulation part to detect blood velocity and the filtering part to remove the noise. In digital part is composed of the A/D conversion part, digital signal processing part, and the communication part to communicate the PC. In this study to implement efficient ultrasound blood velocity measurement system, we can get the patient's blood velocity information in realtime. Thus, It is a useful in the accurate diagnosis with C.T(computered tomography), M.R.I(magnetic resonance imaging).

  • PDF

Visualization of blood sucking phenomena of a female mosquito (암 모기 흡혈과정 가시화)

  • Kim, Bo-Heum;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.114-115
    • /
    • 2007
  • As a carrier of malaria and sneak of blood, mosquitoes are regarded as an unpleasant insect. However, there are novel phenomena that happen inside a mosquito. Among them, we focused on the blood sucking function of a female mosquito. The main objective of this study was to investigate the mosquito's pumping mechanism in order to resolve the problem encountered when we inject or transport biologic fluids into a micro-chip. To analyze the pumping mechanism, we visualized the blood sucking process inside a female mosquito. Flow characteristics of blood flow in a proboscis were investigated experimentally using a micro-PIV velocity field measurement technique. The anatomical variation of head, thorax, abdomen which work as pumps and valves, was visualized using the syncrotron X-ray micro-imaging technique.

  • PDF

Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets (SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구)

  • Huh, H.K.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.

지표 물리탐사법을 이용한 염/담수 영역의 고분해능 영상화

  • 박권규;신제현;박윤성;황세호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.446-449
    • /
    • 2004
  • High resolution geophysical imaging to delineate costal aquifer and seawater- freshwater interface has been applied in Baesu-eup, Yeonggwang-gun, Jeolla province Electrical resistivity information from vertical electrical sounding and 2-D electrical resistivity survey is key parameter to map equivalent Nacl concentration map over the survey area. Seismic velocity from refraction tomographic survey, on the other hand, gives more reliable information on the subsurface stratagraphy than electrical resistivity methods which frequently suffer from low resolution due to masking effect. We imaged high-resolution 3-D structure of costal aquifer by correlating the electrical resistivity with seismic velocity, and mapped equivalent NaCl concentration map using resistivity and hydro-geological information from well logging.

  • PDF

OCEAN WAVE IMAGING MECHANISMS BY AIRBORNE SAR: Pi-SAR X-BAND (Pi-SAR X-BAND 영상에 의한 파랑 이미징 메커니즘 연구)

  • Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.176-179
    • /
    • 2008
  • In the present article, wave imaging mechanisms were investigated using airborne Pi-SAR (Polarimetric-Interferometric SAR) X-band VV images of ocean waves around the Miyake Island at approximately 180 km south from Tokyo, Japan. Two images of a same scene were produced at approximately 20 min. interval from two directions at right angles. One image shows dominant range travelling waves, but the other image shows a different wave pattern. This difference can be caused by the different image modulations of RCS and velocity bunching. In this study, 18 subimages are extracted, and the directional wave spectra are compared to each other of the two different areas.

  • PDF

Transcranial Doppler Ultrasonography(TCD) in diagnosis of Cerebrovascular Accident (CVA) (뇌졸중의 진단에 대한 TCD의 활용 (Brain CT, Brain MRI와 Transcranial Doppler Ultrasonography 비교를 통한 뇌졸중 진단의 상호 보완에 관한 연구))

  • Park, Se-Gi;Kang, Myeong-Seog;Jun, Chan-Yong;Park, Chong-Hyeong
    • The Journal of Korean Medicine
    • /
    • v.17 no.1 s.31
    • /
    • pp.171-189
    • /
    • 1996
  • Background and Purpose: The greater part of patients to visit Hospital of Oriental Medicine suffer from cerebrovascular accident(CVA). There is transcranial Doppler(TCD) in the diagnostic method to confirm cerebrovascular accident(CVA). Transcranial Doppler(TCD) is an accurate method of monitoring the blood flow velocities of the cerebral vessels and have been generally used to prevent symptomatic vasospasm and confirm cerebral infarction. So we studied, in the crebrovascular accident(CVA), to estimate whether transcranial Doppler(TCD) is useful to. Methods: Using transcranial doppler(Multigon Model 500M Transcranial Doppler System), we measured the mean and peak velocity and the direction of blood flow in 10 cerebrovascular accident(CVA)'s subjects who had been examined by Computed Tomography(CT) or Magnetic Resonance Imaging (MRI). Results : As an anticipation, in cerebrovascular accident(CVA)'s subject with Cb-infarction, the mean and peak velocity of blood flow fell down remarkably and the direction of blood flow was change or irritable. But didn't find out any signal in lacunar infarction. Also, in case with spontaneous hemorrhage, the velocity and direction of blood flow was change but this signal was short of diagnosis for Cb-hemorrhage. Besides, we found signals about embolism, stenosis, thrombosis and occlusion in cerebrovascular accident(CVA)'s subjects. Conclusion: In Cb-infarction, the result of TCD was equal to diagnosis with Computed Tomography(CT) or Magnetic Resonance Imaging (MRI). But about lacunar infarction or spontaneous hemorrhage, signals of TCD couldn't be found out or was insufficient more than Computed Tomography(CT) or Magnetic Resonance Imaging(MRI). In cerebrovascular accident(CVA)'s subject with embolism, stenosis, thrombosis or occlusion, signals of TCD were found out more than Computed Tomography(CT) or Magnetic Resonance Imaging(MRI). Therefore transcranial doppler(TCD) is necessary method which makes a diagnosis of cerebrovascular accident(CVA), with Computed Tomography(CT) or Magnetic Resonance Imaging(MRI).

  • PDF

Effect of Cervical Manipulation on Blood Velocity and Flow in Subjects with Asymmetric Vertebral Artery (경추 도수교정이 추골동맥 비대칭군의 혈류속도와 혈류량에 미치는 영향)

  • Kim, Han-Il;Kim, Ho-Bong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.2
    • /
    • pp.31-37
    • /
    • 2013
  • Background: The purpose of this study was to identify the effects of cervical manipulation for improve blood velocity and flow in the subjects with asymmetric vertebral artery. Methods: Twenty-four subjects on asymmetric vertebral artery with right side have less blood flow than left side participated in this study for apply to non-specific cervical manipulation on lower portion. Measurement method were using duplex ultrasound with colour doppler imaging for blood velocity and flow on left and right vertebral artery. Results: Compared changes of blood velocity and flow on unilateral after the cervical manipulation, the left blood velocity decreased significantly (p<.01) and the right blood velocity increased significantly (p<.01). The left blood flow no significant changes and the right blood flow increased significantly (p<.01). Compared changes of blood velocity and flow on bilateral, the left and right blood velocity and flow made significantly difference on pre-manipulation (p<.01). However, both side no significantly difference on post-manipulation. Conclusions: These findings suggest that the non-specific cervical manipulation took effect for improve blood velocity and flow in the subjects with asymmetric vertebral artery. Therefore, therapeutic approaches for improve to asymmetric vertebral artery should be consider non-specific cervical manipulation.

  • PDF

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

Measurement of turbulence intensity of cage net using the particle imaging velocimetry (입자영상유속계를 이용한 가두리 망지의 난류강도 계측)

  • Bae, Jae-Hyun;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.595-603
    • /
    • 2014
  • This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6-6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.