• 제목/요약/키워드: Velocity Generator

검색결과 285건 처리시간 0.022초

충격시험장치 고속유압 속도발생기 해석 및 설계 (Simulation and Design of High-Speed Hydraulic Velocity Generator in Shock Test Machine)

  • 김태형;설창원;김윤재;양명석;이규섭
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.663-668
    • /
    • 2014
  • 기계 및 전자 장비들은 다양한 분야에 여러 형태로 사용되고 있어 충격과 같은 외부 환경에 노출되어 있다. 장비들의 내충격 특성을 평가하기 위해 충격시험장치가 사용되고 있으며, 과도한 응력의 발생에 의한 영구 변형이나 파손, 높은 가속도에 의한 장비 내부 부품의 파손 및 기능정지 등에 대한 평가가 이루어 진다. 이러한 충격시험장치에 있어서 물체를 고속으로 움직이게 하여 물체간의 충격을 유발할 수 있는 속도발생기가 필요하다. 본 연구에서는 유공압을 이용하여 물체를 고속으로 움직일 수 있게 하는 속도발생기를 개념적으로 설계하고, AMESim을 이용한 해석모델을 통하여 발생 속도를 예측하였다. 해석 결과는 축소 제작된 속도발생기의 시험 결과와 비교하여 검증하였으며, 해석 결과를 이용하여 목표 속도에 적합한 속도발생기를 설계하였다.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

다경간 전열관의 난류 여기에 의한 마모특성 연구 (Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation)

  • 김형진;유기완;박치용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

가속형 다침전극의 이온풍 특성 연구 (A Study on Ion Wind Characteristics of Acceleration Type Multipoint Electrode)

  • 김진규
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.104-109
    • /
    • 2011
  • In this paper, after an acceleration typed ion wind generator which could format strong electric field in air was manufactured and installed, the effects of the electrode configuration and distance of acceleration type ion wind generator with triangle structure on the ion wind generation characteristics were investigated. As a result, the ion wind generator with curvature multipoint electrode could generate higher ion wind velocity and ion wind generation yield than others with multipoint electrode, curvature line electrode, line electrode structure. The ion wind generator with curvature multipoint electrode showed a peak ion wind velocity of 1.33[m/s] at 19.0[kV] and a ion wind generation yield of 0.12[m/Ws] at 15.0[kV].

Fluid-elastic Instability Evaluation of Steam Generator Tubes

  • Cho, Young Ki;Park, Jai Hak
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2012
  • It has been reported that the plugged steam generator tube of Three Mile Island Unit 1 in America was damaged by growing flaw and then this steam generator tube destroyed the nearby steam generator tubes of normal state. On this account, stabilizer installation is necessary to prevent secondary damage of the steam generator tubes. The flow-induced vibration is one of the major causes of the fluid-elastic instability. To guarantee the structural integrity of steam generator tubes, the flow-induced vibration caused by the fluid-elastic instability is necessary to be suppressed. In this paper, the effective velocity and the critical velocity are calculated to evaluate the fluid-elastic instability. In addition, stability ratio value of the steam generator tubes is evaluated in order to propose one criterion when to determine stabilizer installation.

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

신형경수로1400 증기발생기 전열관의 유체유발진동 해석 (Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube)

  • 이광한;정대율;변성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

액체로켓엔진 가스발생기 연소특성 (Combustion Characteristics of Gas Generator for Liquid Rocket Engine)

  • 김승한;한영민;문일윤;이광진;설우석;이창진;김승한
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.213-216
    • /
    • 2004
  • The results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at design and off-design point are described. The parameters used in this analysis are the average exit temperature($T_{GG}$) and the characteristic velocity($C^{\ast}$). The average gas temperature at the exit of gas generator is found to be a function of propellant O/F ratio. For the gas generator having residence time of 4msec or more, the effect of flame residence time and combustion chamber pressure on the exit temperature is not significant. The exit characteristic velocity is found to be linearly proportional to the gas temperature at the exit of gas generator.

  • PDF

원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.