• Title/Summary/Keyword: Velocity Extension

Search Result 243, Processing Time 0.025 seconds

The Effect of Modified Swing Method on the Muscle Activation Patterns of Upper Limb in Wheelchair Badminton Players

  • You Joo SHIN;Duk Chan JANG;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the possibility of modified swing to prevent shoulder injury by analyzing differences in the muscle activation patterns of upper limb by the swing method in wheelchair badminton players. Research design, data, and methodology: 10 wheelchair badminton players participated in the experiment as subjects and performed 10 high clears and 10 smashes in both traditional and modified swing methods toward a shuttlecock hung at the height of racket impact point. For each trial, activation patterns of biceps brachii, triceps brachii, anterior deltoid, and posterior deltoid were measured from the upper limb participating in the swing from which the duration, peak, and root mean square (RMS) of electromyography (EMG) activities from swing initiation to shuttle impact were calculated. The maximum swing velocity of the smash and the distance of the high clear were also measured with both methods to compare differences in the swing velocity and shuttle hit distance. Results: Differences in the EMG peak and RMS of the anterior deltoid by swing methods were shown to differ by the skill type, being higher in the traditional swing method than the modified during only the high clear. The EMG peak and RMS, and the duration of the posterior deltoid were higher and longer with the traditional swing method than the modified during both the smash and high clear. The intensities of the biceps brachii and triceps brachii activities measured during the smash and high clear were higher in the traditional swing method than the modified, and the biceps brachii and triceps activity durations during the high clear were shorter in the modified swing method than the traditional. The maximum swing velocity of the smash was faster with the traditional swing method than the modified, while the distance of the high clear did not differ significantly. Conclusions: These results suggest that the modified swing can be an effective performance method for preventing shoulder injuries without undue loss of impact power in wheelchair badminton players by reducing excessive loads imposed on the shoulder and allowing the optimal use of the elbow extension.

Gas kinematics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.61.4-62
    • /
    • 2020
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (~42.4" × 12") spatial; ~1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into kinematically cold, warm or hot ones with respect to their velocity dispersion: 1) cold: < 4 km/s, 2) warm: 4 ~ 8 km/s, 3) hot: > 8 km/s. We then derive the Toomre-Q parameters of NGC 6822 using the kinematically decomposed H I gas maps. We also correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The kinematically cold component is likely to better follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS (WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가)

  • Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

The Kinematic Analysis of the Tennis Flat Serve Motion (테니스 플랫 서브 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body

Kinematical Analysis of Angle and Angular Velocity of the Body Segment on Spike in Volleyball (배구 스파이크시 신체분절의 각도와 각속도에 대한 운동학적 분석)

  • Cho, Phil-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.191-199
    • /
    • 2007
  • This study was conducted to examine the biomechanical characteristics of open spike in the volleyball to improve the technique of the volleyball spike. The subjects were six male college and high school athletes. The motions of volleyball spike were filmed by using two Sony VX 2000 Video Cameras. The mechanical factors were angle and angular velocity of body segments in the upper and the lower limbs. The conclusions were as follows; 1. The angle of the shoulder joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 2. The angle of the elbow joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 3. The angle of the wrist joint of the skilled showed smaller than that of the unskilled in impacting of the volley ball spike. 4. The angle of the hip joint of skilled showed larger than that of unskilled in impacting of the volley ball spike. 5. The angle of the knee joint of the skilled and the unskilled showed same in take off and impacting of the volley ball spike, and that of the skilled showed smaller than that of the unskilled in take-off touchdown and touchdown after impact of the volley ball spike. 6. The angle of the ankle joint of skilled showed larger than unskilled in take-off of the volley ball spike. 7. The angular velocity of the shoulder joint, elbow joint, wrist joint of the skilled showed faster than that of the unskilled in impacting of the volley ball spike. Taken together the result of them, I have come to conclusion that knee joint angle in touchdown of the take off should be decreased and knee joint angle in take off should be increased, and then stability of the take off should be made and, and that extension of the elbow joint should be made and wrist joint angle decreased and shoulder and hip joint angle increased, and then C.O.G of the arm and hand should be positioned ahead C.O.G of the body in impacting for effective impact of the spike, and that the transfer of the angular velocity of body segments for effective impact of the spike make from the proximal segment to the distal segment at spike in volleyball.

Sports Injury of the Elbow (주관절의 스포츠 손상)

  • Sin, Hyeon-Dae
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • Elbow joint injuries during exercise mostly occur by repeated stress to the joint than direct trauma. A pitcher who uses his arm above his head is most likely to be injured. So learning the right way to exercise and gaining the strength by maturating the body are essential for diminishing the chance of injury. On lateral ulnar tendon injury, which is most commonly injured area on elbow joint, pitchers generally complain of pain in arm movement above head and reduction of velocity, accuracy, and number of pitching. When there is pain on upper arm in harsh using, the stress fracture must be thought and epicondylar physis fracture of medial arm can occur by repeated abduction stress and contraction of flexors on forearm on children with immature skeleton. Osteochondritis dissecans of capitullum occur in young athletes who use there upper limb continuously lifting weights and gym work. And stress of abduction-extension includes damage of soft tissue and bone components, post medial crush syndrome, lateral ulnar ligament injury, extensor-abductor injury, stress of radius- capitullum are in this category.

  • PDF

A New Mean Frequency Extension Method in Doppler System (초음파 도플러 시스템에서 새로운 평균 주파수 확장 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • The use of ultrasound pulsed Doppler systems has become increasingly popular due to the advantages of easy measurements of blood velocity, volume blood blow, and irregularities of the circulatory system. However, the 2-D Doppler systems have several problems, such as range ambiguity, low signal to noise ratio, and slow frame rate. The mean frequency aliasing problem originating from the pulse repetition frequency is one of major limitations in pulsed Doppler systems. A conventional approach to resolve this problem is tracking the mean frequency close to and beyond the Nyquist frequency along the temporal axis. In this paper, a new concept of tracking the mean frequency along the spatial axis is proposed. The proposed technique is fault tolerant by nature and more suitable for multi gate and 2-D Doppler system than conventional methods.

  • PDF

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF

Vortex Interaction Characteristics of a Delta Wing/LEX (삼각날개/LEX에서의 와류 상호작용 특성)

  • 이기영;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • An experimental study of the vortex interaction characteristics of a delta wing/LEX configuration was conducted in a wind tunnel using the micro water droplet and laser beam sheet visualization technique. The main focus of this study was to analyze the effect of the angle of attack and sideslip angle on the vortex interaction and vortex breakdown. These tests were accomplished at angles of attack between $16^{\circ}$ and $28^{\circ}$ and sideslip angle between $0^{\circ}$ and $-15^{\circ}$ at free-stream velocity of 6.2 m/s. Flow visualization data provide a description of the vortex interaction between LEX and wing vortices, and of the vortex breakdown. The introduction of LEX vortex stabilized the vortical flow, and delayed the vortex breakdown up to higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas they are suppressed on the leeward side.

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF