• Title/Summary/Keyword: Velocity Estimation

Search Result 1,083, Processing Time 0.042 seconds

Joint Localization and Velocity Estimation for Pulse Radar in the Near-field Environments

  • Nakyung Lee;Hyunwoo Park;Daesung Park;Bukeun Byeon;Sunwoo Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.315-321
    • /
    • 2023
  • In this paper, we propose an algorithm that jointly estimates the location and velocity of a near-field moving target in a pulse radar system. The proposed algorithm estimates the location and velocity corresponding to the outcome of orthogonal matching pursuit (OMP) in a 4-dimensional (4D) location-velocity space. To address the high computational complexity of 4D parameter joint estimation, we propose an algorithm that iteratively estimates the target's 2D location and velocity sequentially. Through simulations, we analyze the estimation performance and verify the computational efficiency of the proposed algorithm.

Missile closing velocity estimation based on the LOS rate measurement (수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

Velocity Estimation of a Compass Gait Biped Robot by Using Impact Condition and Initial Condition Reset (충돌 조건과 초기치 리셋을 이용한 컴퍼스 이족 로봇의 속도 추정)

  • Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2266-2268
    • /
    • 2009
  • In this paper, a simple method of angle velocity estimation is presented for a passive dynamic biped robot. The estimation problem is not an easy task because its dynamic model is a hybrid system involved with an impact condition. Instead of designing a complex observer for hybrid systems we simply utilize the impact condition to reset the initial condition of the high-pass filter when the non-support leg hits the slope. The approach has been verified by simulation results.

Sensitivity Analysis of Least Squares Velocity Estimation Using a Regular Polygonal Array of Optical Mice (정다각형 배열 광마우스를 이용한 최소 자승 속도 추정법에 대한 민감도 분석)

  • Kim, Sung-Bok;Jeong, Il-Hwa;Lee, Sang-Hyup
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.145-146
    • /
    • 2007
  • This paper presents the sensitivity analysis of the leasst qsuares velocity estimation of an omnidirectional mobile robot using a regular polygonal array of optical mice. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Then, for a given set of optical mouse readings, the least squares velocity estimation of a mobile robot is obtained as the simple average. Finally, the sensitivity analysis of the proposed least squares velocity estimation to imprecise installation is made.

  • PDF

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

Range and Velocity Estimation of the Object using a Moving Camera (움직이는 카메라를 이용한 목표물의 거리 및 속도 추정)

  • Byun, Sang-Hoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1737-1743
    • /
    • 2013
  • This paper proposes the range and velocity of the object estimation method using a moving camera. Structure and motion (SaM) estimation is to estimate the Euclidean geometry of the object as well as the relative motion between the camera and object. Unlike the previous works, the proposed estimation method can relax the camera and object motion constraints. To this end, we arrange the dynamics of moving camera-moving object relative motion model in an appropriate form such that the nonlinear observer can be employed for the SaM estimation. Through both simulations and experiments we have confirmed the validity of the proposed estimation algorithm.

Maximum Control Force of Velocity-dependent Damping Devices Using Response Estimation Models (응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정)

  • 이상현;민경원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.503-511
    • /
    • 2004
  • In this study, for estimating responses of a controlled structure and determining the maximum control force of velocity-dependent damping devices, three estimation models such as Fourier envelope convex model, probability model, and Newmark design spectrum are used. For this purpose, a procedure is proposed for estimating actual velocity using pseudo-velocity and this procedure considers the effects of damping ratio increased by the damping device. Time history results indicate that actual velocity should be used for estimating accurate maximum control force of damping device and Newmark design spectrum modified by the proposed equation gives the best estimation results for over all period structures.

A Velocity-Adaptive Channel Estimation Scheme Using the Simple Zero-forcing Technique in the Frequency Domain (주파수 영역에서의 간단한 zero-forcing 기법을 이용한 속도 적응형 채널 추정 기법)

  • Yu Takki;Park Goohyun;Hong Daesik;Kang Changeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.38-47
    • /
    • 2006
  • In this paper, we propose a velocity-adaptive channel estimation scheme using the simple zero-forcing technique in the frequency domain. Channel estimation is performed by removing frequency components that are higher than the maximum Doppler frequency in the received signal. The proposed scheme can be extended to the combined estimation scheme for channel coefficients and mobile velocity using one FFT/IFFT module. Simulation results show that the proposed scheme outperforms conventional schemes for a wide range of mobile velocities($3{\sim}300\;Km/h$). Finally, the MSE for the proposed channel estimation scheme is analyzed.

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.