• Title/Summary/Keyword: Velocity Data Reduction

Search Result 157, Processing Time 0.023 seconds

Analysis and Management Strategies of the Cold Air Characteristics in Hannamgeumbuk-Jeongmaek and Geumbuk-Jeongmaek (한남금북·금북정맥 일대의 찬공기 특성 분석을 통한 청주시 찬공기 관리방안)

  • SON, Jeong-Min;EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.152-171
    • /
    • 2019
  • In this study, we analyzed the characteristics of the cold air generated in Hannamgeumbuk and Geumbuk-Jeongmaek and proposed their management strategies. We also suggested management strategies after analyzing detailed cold airflows for Cheongju located Hannamgeumbuk-Jeongmaek and we compared the degree of nighttime temperature reduction of the Jeongmaek by using data obtained from observatories located on Cheongju. We used KALM(Kaltluftabflussmodell), a cold air simulation model developed in Germanay and identified both cold airflows and altitude of cold air layers generated during 360minutes at night. As a result, the cold airflow generated in the Jeongmaek became strong and the cold air was appeared clearly in the western part of the Hannamgeumbuk-Jeongamek and in the northern part of the Geumbuk-Jeongmaek. The average velocity of cold airflow was recorded at 0.45m/s, and the maximum speed of cold airflow was recorded at 2.70m/s. The average height of the cold air layer was 104.27m/s and the maximum thickness was 255.0m. The average velocity of cold airflows in Cheongju was 0.51m/s and the average height of cold air layer was 48.87m high. The highest degree of nighttime temperature reduction appeared in the Cheongnamdae observatory($-3.8^{\circ}C$), where the altitude of the cold air layer is high. The results showed that cooling effect of Jeongmaek actually affected the temperature reduction during nighttime. Based on the results, we designated the main mountain area of the Jeongmaek with active cold air generation as "cold air conservation areas" and proposed the current forest and topography conservation. We also proposed to designate areas that facilitate the cold airflows as "cold air management areas" and to complement the function of Jeongmaek. This study could support the establishment of systematic management plans of the Jeongmaek. In addition, it is expected that the results can be applied as basic data for ventilation paths of Cheongju.

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Determination of Mode Dispersion Curves of Surface Wave Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave)방법을 이용한 표면파 모드 분산곡선의 결정)

  • Park, Hyung-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2006
  • The evaluation of shear modulus is very important in various fields of civil engineering. Non-destructive seismic methods can be used to determine shear wave velocity ($V_s$) profile. Non-destructive seismic methods geneally consist of three steps: field testing, evaluation of dispersion curve, and determination of Vs profile by inversion process. Non-destructive seismic methods can be divided into two categories according to the number of receivers used for data reduction: two-channel tests and multi-channel tests. Two channel tests use apparent velocity dispersion curve and multi-channel tests use mode dispersion curves. Multi-channel tests using mode dispersion curve can reduce calculation time to determine soil profile and uncertainties in inversion process. So far, only multi-channel tests can determine mode dispersion curves but multi-channel test needs many receivers to determine reasonable mode dispersion curves. In this paper, HWAW (Harmonic Wavelet Analysis of Wave) method is applied to determine mode dispersion curves. HWAW method uses short test setup which consists of two receivers with a spacing of 1 to 3 m. Through numerical simulations and field application, it is shown that HWAW can determine resonable mode disperson curves.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

Numerical and Experimental Studies on the Fluidic Characteristics and Performance of Liner-type Microtube

  • Kim, Jin Hyun;Woo, Man Ho;Kim, Dong Eok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: Methods: Three-dimensional CFD modeling was conducted to analyze the flow structure and discharge flow rate corresponding to the variation in the geometry of the flow channel in a microtube. Additionally, experiments were carried out, and the discharge flow rate was measured at various inlet pressures and inclination angles of the microtube. Results: The quantitative data of velocity distribution and discharge flow rate were obtained. As the width and length of the microtip increased, the discharge flow rate decreased significantly because of the increase in the loss of pressure along the microtube. As the depth of the microtip increased, the flow rate also increased because of the reduction in the flow resistance. However, in this analysis, the variation in the angle of the microtip did not influence the flow rate. From the experimental results, it was observed that the flow rate increased linearly with the increase in the inlet pressure, and the effects of the inclination angle were not clearly observed in those test cases. The values of the flow rate obtained from the experiments were significantly lower than that obtained from the CFD analysis. This is because of the distortion of the shape of the flow path inside the microtube during the fabrication process. The distortion of the flow path might decrease the flow cross-sectional area, and it would increase the flow resistance inside the microtube. The variation in the flow rate corresponding to the variation in the inlet pressure showed similar trends. Conclusions: Therefore, the results of the numerical analysis obtained from this study can be efficiently utilized for optimizing the shape of the microtip inside a microtube.

Wiggle-free Finite Element Model for extended Boussinesq equations (확장형 Boussinesq FEM model의 수치진동오차 개선)

  • Woo, Seung-Buhm;Choi, Young-Kwang;Gonzalez-Ondina, Jose M.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Subgrid scale stabilization method is applied to Woo and Liu(2004)'s extended Boussinesq FEM numerical model to eliminate the 2dx wiggles. In order to optimize the computational efficiency, Hessian operator is introduced and the matrix of velocity vector is combined to one matrix for solving matrix equations. The mass lumping technique is also applied to the matrix equations of auxiliary variables. The newly developed code is applied to simulate Vincent and Briggs(1989)' wave transformation experiments and the results show that the numerical solution is almost wiggle-free and it matches very well with experimental data. Due to improvement of computational efficiency and wiggle reduction, it is plausible to apply this model to a realistic problem such as harbor oscillation problems.

The Damage Reduction Strategy for Power Plant Using Air Bubble Barrier (에어버블 차단막을 이용한 발전플랜트 피해 저감 방안 연구)

  • Chang, Hyung Joon;Lee, Ho Jin;Lee, Hyo Sang;Hwang, Myung Gyu
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • Power plant is the important infrastructure to generate electricity. This plant in normally located next to river and seashore in order to take cooling water through intake. However, the plant is stopped when marine organism blocks the intake, and it caused damages by social and commercial. Therefore, air bubble barrier has been used to block marine organism in order to operate the plant properly. The aim of this study was to test the rates of cut off of floating substance by air bubble barrier to develop the facility for the plant. The test was conducted by current velocity, pressure of air, specific gravity of the substance and the layer of the barrier, and the result showed the blocking rates by the condition. It will be used as basic data to develop the air bubble barrier and to operate power plant properly from the marine organism.