• Title/Summary/Keyword: Velocity Compensation

Search Result 215, Processing Time 0.026 seconds

Analysis on Influence of Errors for Dual-axis Rotational Inertial Navigation System Performance (2축 회전형 관성항법장치 성능에 영향을 미치는 오차 분석)

  • Minsu Jo;Chanju Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • INS(Inertial Navigation System) calculates navigation information using a vehicle's acceleration and angular velocity without the outside information. However, when navigation is performed for a long time, navigation error gradually diverges and the performance decreases. To enhance INS's performance, the rotation of inertial measurement unit is developed to compensate error sources of inertial sensors, which is called RINS(Rotational Inertial Navigation System). This paper analyzes the influence of several errors for dual-axis RINS and the shows the results using simulation.

Analysis of Frequency Lock-in Breakings with Random Dithering in a Ring Laser Gyroscope (랜덤 디더링을 이용한 링레이저 자이로 주파수 잠김 깨짐 특성 분석)

  • Woo-Seok Choi;Byung-Yoon Park
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.76-83
    • /
    • 2023
  • In this paper, the results of analyzing the frequency lock-in breaking characteristics of a ring laser gyroscope with random dithering through numerical experiments are presented. By observing the variant features in the frequency lock-in characteristics according to the dithering amplitude noise, it was possible to analyze the minimum noise condition that causes the frequency lock-in to be broken. It was confirmed that the result is closely related to the relative difference between the dynamic frequency lock-in corresponding to the average dithering amplitude and the frequency determined by the Sagnac effect corresponding to an input rotational angular velocity.

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Influences of Viscous Losses and End Effects on Liquid Metal Flow in Electromagnetic Pumps

  • Kim, Hee-Reyoung;Seo, Joon-Ho;Hong, Sang-Hee;Suwon Cho;Nam, Ho-Yun;Man Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.233-240
    • /
    • 1996
  • Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current ( u x B ) generated by the liquid metal movement across the magnetic field rather than the one (E) produced by externally applied magnetic fields by three-phase winding currents. It is concluded that since the influences of the end effects in addition to viscous losses are extensive particularly in high-velocity operations of the EM pumps, it is necessary to find ways to suppress them, such as proper selection of the pump parameters and compensation of the end effects.

  • PDF

Autogeneous Shrinkage Characteristics of Ultra High Performance Concrete (초고성능 콘크리트의 자기수축 특성)

  • Kim, Sung-Wook;Choi, Sung;Lee, Kwang-Myong;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.295-301
    • /
    • 2011
  • Recently, the use of UHPC made of superplasticizers, silica fume, and steel fibers has been increasing worldwide. Although UHPC has a very high strength as well as an excellent durability performance due to its dense microstructures, earlyage cracks may occur due to the high heat of hydration and autogenous shrinkage caused by low W/B and high unit cement content. The early-age shrinkage cracking of UHPC can be controlled by using the shrinkage reducers and expansive admixtures having autogenous shrinkage compensation effect. In this paper, ultrasonic pulse velocity of UHPC containing shrinkage reducers and expansive agents was measured to predict its stiffness change. Also, the effect of shrinkage reducers and expansive agents on the autogenous shinkage of UHPC was investigated through the shrinkage test of UHPC specimens. Furthermore, the material coefficients of autogenous shrinkage prediction model were determined using the autogenous shrinkage values of UHPC with age. Consequently, the test results showed that, by adding shrinkage reducers and expansive agents, the stiffness of UHPC was rapidly developed at early-ages and the autogenous shrinkage was considerably reduced.

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

The Change of Postural Sway of Diabetic Neuropathy by Galvanic Vestibular Stimulation (평류전정자극에 의한 당뇨성 신경증 환자의 자세동요 변화)

  • Hwang, Tae-Yeun;Kim, Young-Nam;Kim, Tae-Youl;Park, Jang-Sung;Yoon, Se-Won
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.71-84
    • /
    • 2005
  • This study had performed with purposes to analyze the influence of the change of vestibular sens, visual and proprioceptive sense to the postural sway, so as to supply the necessary clinical materials through developing the physical therapeutic interventions and assessment format for the diabetic neuropathy patients. The sample consisted of fifteen diabetic neuropathy patients with sensory disorder in their lower limbs and fifteen age-matched normal control group. Then the effect of the GVS and the visual cue open and closed to the postural sway were measured by CoP. The summary of the comparison results were obtained below. In the comparison of diabetes neuropathy patients group and age matched normal control group, however diabetes neuropathy patients group had a decrease in superficial tactile sense(p<.001) and nerve conduction velocity(p<.001), they were able to control the posture and walk. So it is, diabetes neuropaty patients had more disturbance compared with AMC group on at a hard surface, particularly in the visual cue open(p<.001) and visual cue closed(p<.01). Moreover, since diabetes neuropathy patients group had more differences in visual cue open and closed(p<. 01), GVS(p<.01), it meant that they're affected largely by vestibular sense, visual sense. In addition, since there're the largest change in doubled sense disturbance such as visual cue open and closed under GVS, it meant that compensation of other senses were quite important for the diabetes neuropathy patients' postural control. In the conclusion, diabetes neuropathy patients who decrease or lose the somatosensory system, sensory training of visual and vestibular system are likely to be quite essential to control the posture and balance.

  • PDF

A Suitability Selection for Marine Afforestation with Physical Environments (바다숲 조성해역의 물리적 환경을 고려한 최적 적지선정)

  • Oh, Tae-Geon;Kim, Dae-Kweon;Kim, Chang-Gil;Lee, Moon-Ock;Cho, Jae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.183-194
    • /
    • 2010
  • A suitability analysis for marine afforestation was carried out on physical items based on slop rate, bottom sediment, light intensity, velocity, and wave at north Geomoon waters in Korea. The data from each physical item were changed to a GSDM (Gridded Spatial Distribution Map) using Kriging interpolation. A GSDM grid includes information, and each grid was given a SI (suitability index) of 3 grades(SI of first suitability was 100, SI of second suitability was 50, and non-suitability had no SI). According to the analysis results of all overlaid GSDM, first suitability had 500 SI, and suitability area was 0.25ha. Second and third suitability had 400~450 SI, and suitability area was 2.36ha, 1.80ha, respectively. Therefore, the results suggest that reefs installed for marine afforestation should be anti-slip types against steep slope, and the target species need to include algae with low compensation light intensity in second and third suitability.

Compensation Characteristics of Distorted WDM Signals Depending on Distribution Patterns of SMF Length and RDPS (SMF 길이와 RDPS의 분포 패턴에 따른 왜곡된 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.158-164
    • /
    • 2014
  • For transmitting the ultra-high speed optical signals with better performance, the techniques to suppress or mitigate the signal distortion due to group velocity dispersion and optical Kerr effects are required. Dispersion management (DM), optical phase conjugation, and the combination of these two are promising techniques to compensate for the signal distortion. However, the fixed length of single mode fiber (SMF) and the fixed residual dispersion per span (RDPS) usually used in these optical links restricts flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the artificial and the random distribution of SMF length and RDPS of each fiber spans consisted of the optical link. It is confirmed that the proposed link configurations should be one of the methods suitable for implementing the flexible optical transmission systems, however which depend on other link parameters, such as the averaged RDPS, and the launch power.