• Title/Summary/Keyword: Velocity Ambiguity

Search Result 36, Processing Time 0.023 seconds

Flow Characteristics of Liquid Ramjet Engines using Two Color PIV

  • Ahn Kyubok;Yoon Youngbin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.151-163
    • /
    • 2001
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distributions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a signal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones, intake air mixing and turbulent kinetic energy have been investigated varying inlet angles and dome heights. It was found that the primary recirculation zone is affected mainly by the dome height, whereas the secondary recirculation zone is influenced by the air inlet angle.

  • PDF

Architecture of Signal Processing Module for Multi-Target Detection in Automotive FMCW Radar (차량용 FMCW 레이더의 다중 타겟 검출을 위한 신호처리부 구조 제안)

  • Hyun, EuGin;Oh, WooJin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.93-102
    • /
    • 2010
  • The FMCW(Frequency Modulation Continuous Wave) radar possesses range-velocity ambiguity to identify the correct combination of beat frequencies for each target in the multi-target situation. It can lead to ghost targets and missing targets, and it can reduce the detection probability. In this pap er, we propose an effective identification algorithm for the correct pairs of beat frequencies and the signal processing hardware architecture to effectively support the algorithm. First, using the correlation of the detected up- and down-beat frequencies and Doppler frequencies, the possible combinations are determined. Then, final pairing algorithm is completed with the power spectrum density of the correlated up- and down-beat frequencies. The proposed hardware processor has the basic architecture consisting of beat-frequency registers, pairing table memory, and decision unit. This method will be useful to improve the radar detection probability and reduce the false alarm rate.

The development of Laser Vibrometer for the measurement of vibration of electric machinery (전기기기의 진동측정을 위한 레이저 진동계의 개발)

  • Kim, Seong-Hoon;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1867-1870
    • /
    • 1997
  • A Laser Doppler Vibrometer (LDV) based on the heterodyne method was developed using He-Ne laser as a light source. The heterodyne method was employed to eliminate the ambiguity in the direction of the motion. The frequency shifted object beam (40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was combined at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified, filtered and downconverted to intermediate frequency centered at 5 MHz. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and bushings, of which resonant frequencies are changed when they are damaged.

  • PDF

Implementation of High-Resolution Angle Estimator for an Unmanned Ground Vehicle

  • Cha, SeungHun;Yeom, DongJin;Kim, EunHee
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • We implemented a real-time radar system for an unmanned ground vehicle designed to run on unpaved or bumpy roads. The system must be able to detect slow targets in a cluttered environment and cover wide angular sections with high resolution at the same time. The system consists of array antennas, preprocessors for digital beam forming, and digital signal processors for the detection process which uses sawtooth waveforms and high-resolution estimation, and is called forward/backward spatial smoothing beamspace multiple signal classification (FBSS BS-MUSIC). We show that the sawtooth waveforms enhance the angular estimation capability of FBSS BS-MUSIC in addition to their well-known advantages of removing the ambiguity of targets and detecting slow targets with improved velocity resolution.

A Study to improve a Target Localization Performance using Passive Line Arrays buried in the Seabed (매설된 선배열 음향센서를 이용한 표적 위치추정 성능향상 기법 연구)

  • Yang, In-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.49-57
    • /
    • 2005
  • The target localization using the line arrays buried in the seabed is a difficult problem due to the complex sea bottom characteristics and need to compensate the wave propagation effect to localize the target accurately Sound speed mismatch in the seabed causes a bias in the target bearing estimation and induces the localization error. In this paper we describe a target localization method with improved accuracy of target bearing and localization by calibration the sound speed in the seabed. The proposed algorithm is verified through the ocean data.

A $^{13}CO(1-0)$ Survey of the Second Quadrant of Galactic Plane I (은하면 제2상한 $^{13}CO(1-0)$ 탐사관측연구 I)

  • Lee, Young-Ung;Kim, Young-Sik;Kang, Hyun-Woo;Jung, Jae-Hoon;Lee, Chang-Hoon;Yim, In-Sung;Kim, Bong-Gyu;Kim, Hyun-Goo;Kim, Kwang-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2012
  • We have observed the part of the second quadrant of the Galactic Plane in $^{13}CO(1-0)$ using the multibeam receiver system installed on the 14 m telescope at Taeduk Radio Astronomy Observatory. The target region (L=108 to 112.5) is the part of the $^{12}CO$ Outer Galactic Plane Survey (Heyer et al. 1998), and it is for the exact Galactic plane with the latitude range of +1 and -1 degree. Total of 48,000 spectra (about 9 square degees) were obtained on 50" grid. The selected velocity resolution is 0.63 km/sec and sensitivity per channel is 0.17 K, and the covered velocity is 320 km/sec. We developed a new reduction method, which effectively deals with a relatively noisy 3-dimensional database. The collected $^{13}CO$ database will be manipulated with pre-existing $^{12}CO$ data to get several physical parameters. As it is located in the second quadrant, the kinematic distances of the individual clouds, which will be identified, can be estimated relatively easily without any distance ambiguity. In this meeting we present the reduction method, statistics, and some channel maps, integrated intensity maps, and spatial-velocity maps. We intend to clarify any difference of their characteristics between the clouds in the Outer Galaxy and Inner Galaxy using our data base.

  • PDF

Anewwaveform inversion methodto determine the rupture directivity of moderate earthquakes: numerical tests for rupture models (중간 규모 지진의 단층 파해 방향성 결정을 위한 새로운 주파수 영역 역산방법: 파쇄 전파 모델을 이용한 수치 시험)

  • Yoo, Seung-Hoon;Rhie, Jun-Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.114-120
    • /
    • 2009
  • Rupture directivity is the important parameter in estimating damage due to earthquakes. However, the traditional moment tensor inversion technique cannot resolve the real fault plane or the rupture directivity. To overcome these limitations, we have developed a new inversion algorithm to determine the moment tensor solution and the rupture directivity for moderate earthquakes, using the waveform inversion technique in the frequency domain. Numerical experiments for unilateral and bilateral rupture models with various rupture velocities confirm that the method can resolve the ambiguity of the fault planes and the rupture directivity successfully. To verify the feasibility of the technique, we tested the sensitivity to velocity models, which must be the most critical factor in practice. The results of the sensitivity tests show that the method can be applied even though the velocity model is not perfect. If this method is applied in regions where the velocity model is well verified, we can estimate the rupture directivity of a moderate earthquake. This method makes a significant contribution to understanding the characteristics of earthquakes in those regions.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

Design and Implementation of True Random Noise Radar System

  • Min, Woo-Ki;Kim, Cheol-Hoo;Lukin, Constantin A.;Kim, Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.130-140
    • /
    • 2009
  • The design theory and experimental results of a true random noise radar system are presented in this paper. Target range information can be extracted precisely by correlation processing between the delayed reference and the signal received from a target, and the velocity information by the Doppler processing with successive correlation data. A K-band noise radar system was designed using random FM noise signal, and the characteristics of the fabricated system were examined with laboratory and outdoor experiments. A C-band random FM noise signal was generated by applying a low-frequency white Gaussian noise source to VCO(Voltage Controlled Oscillator), and a K-band Tx noise signal with 100 MHz bandwidth was obtained by using a following frequency multiplier. Two modified wave-guide horn arrays were designed and fabricated, and used for the Tx and Rx antennas. The required amount of Tx/Rx isolation was attained by using a coupling cancellation circuit as well as keeping them apart with predetermined spacing. A double down-conversion scheme was used in the Rx and reference channels, respectively, for easy post processing such as correlation and Doppler processing. The implemented noise radar performance was examined with a moving bicycle and a very high-speed target with a velocity of 150 m/s. The results extracted by the Matlab simulation using the logging data were found to be in a reasonable agreement with the expected results.

Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity (강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측)

  • Kim K.J.;Yang D.Y.;Yoon J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF