• Title/Summary/Keyword: Vehicular Communication

Search Result 295, Processing Time 0.022 seconds

Hash Tree based Communication Protocol in V2X Environments Including Internet of Vehicles for Providing Secure Vehicular Communication Services (차량인터넷을 포함한 V2X 환경에서 안전한 차량 통신 서비스 제공을 위한 해시 트리 기반 통신 프로토콜)

  • Jin, Byungwook;Cha, Siho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Various messages generated in vehicles are transmitted based on the wireless telecommunication which is a core technology of vehicle to everything (V2X). However, the hackers attack them upon penetration to the system and network to cause the generation of users' inconveniences for vehicular communication. Moreover, huge damage could be occurred in terms of physical and materialistic areas if the users in the vehicles were attacked in the communication environment. Therefore, this study was to design the safe communication protocol using hash tree technique in the V2X environments. Using hash tree technique, processes of issuing certificate and registration and communication protocol were designed, and safety analysis was performed on the attacking technique which is occurred in the existing vehicles. Approximately 62% of decrease in the capacity analysis was found upon comparative analysis of telecommunication processes with the system to issue the certificate which is used in the existing vehicles.

A Computationally Inexpensive Radio Propagation Model for Vehicular Communication on Flyovers and Inside Underpasses

  • Ahsan Qureshi, Muhammad;Mostajeran, Ehsan;Noor, Rafidah Md;Shamim, Azra;Ke, Chih-Heng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4123-4144
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) utilize radio propagation models (RPMs) to predict path loss in vehicular environment. Modern urban vehicular environment contains road infrastructure units that include road tunnels, straight roads, curved roads flyovers and underpasses. Different RPMs were proposed in the past to predict path loss, but modern road infrastructure units especially flyovers and underpasses are neglected previously. Most of the existing RPMs are computationally complex and ignore some of the critical features such as impact of infrastructure units on the signal propagation and the effect of both static and moving radio obstacles on signal attenuation. Therefore, the existing RPMs are incapable of predicting path loss in flyovers and underpass accurately. This paper proposes an RPM to predict path loss for vehicular communication on flyovers and inside underpasses that considers both the static and moving radio obstacles while requiring only marginal overhead. The proposed RPM is validated based upon the field measurements in 5 GHz frequency band. A close agreement is found between the measured and predicted values of path loss.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Analysis of adjacent channel interference using distribution function for V2X communication systems in the 5.9-GHz band for ITS

  • Song, Yoo Seung;Lee, Shin Kyung;Lee, Jeong Woo;Kang, Do Wook;Min, Kyoung Wook
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.703-714
    • /
    • 2019
  • Many use cases have been presented on providing convenience and safety for vehicles employing wireless access in vehicular environments and long-term evolution communication technologies. As the 70-MHz bandwidth in the 5.9-GHz band is allocated as an intelligent transportation system (ITS) service, there exists the issue that vehicular communication systems should not interfere with each other during their usage. Numerous studies have been conducted on adjacent interfering channels, but there is insufficient research on vehicular communication systems in the ITS band. In this paper, we analyze the interference channel performance between communication systems using distribution functions. Two types of scenarios comprising adjacent channel interference are defined. In each scenario, a combination of an aggressor and victim network is categorized into four test cases. The minimum requirements and conditions to meet a 10% packet error rate are analyzed in terms of outage probability, packet error rate, and throughput for different transmission rates. This paper presents an adjacent channel interference ratio and communication coverage to obtain a satisfactory performance.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

Multi-Hop Vehicular Cloud Construction and Resource Allocation in VANETs (VANET 망에서 다중 홉 클라우드 형성 및 리소스 할당)

  • Choi, Hyunseok;Nam, Youngju;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.263-270
    • /
    • 2019
  • Vehicular cloud computing is a new emerging technology that can provide drivers with cloud services to enable various vehicular applications. A vehicular cloud is defined as a set of vehicles that share their own resources. Vehicles should collaborate with each other to construct vehicular clouds through vehicle-to-vehicle communications. Since collaborating vehicles to construct the vehicular cloud have different speeds, directions and locations respectively, the vehicular cloud is constructed in multi-hop communication range. Due to intermittent wireless connectivity and low density of vehicles with the limited resources, the construction of vehicular cloud with multi-hop communications has become challenging in vehicular environments in terms of the service success ratio, the service delay, and the transmitted packet number. Thus, we propose a multi-hop vehicular cloud construction protocol that increases the service success ratio and decreases the service delay and the transmitted packet number. The proposed protocol uses a connection time-based intermediate vehicle selection scheme to reduce the cloud failure probability of multi-hop vehicular cloud. Simulation results conducted in various environments verify that the proposed protocol achieves better performance than the existing protocol.

A Realistic Path Loss Model for Real-time Communication in the Urban Grid Environment for Vehicular Ad hoc Networks

  • Mostajeran, Ehsan;Noor, Rafidah Md;Anisi, Mohammad Hossein;Ahmedy, Ismail;Khan, Fawad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4698-4716
    • /
    • 2017
  • Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle's status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment.

Robust Conditional Privacy-Preserving Authentication based on Pseudonym Root with Cuckoo Filter in Vehicular Ad Hoc Networks

  • Alazzawi, Murtadha A.;Lu, Hongwei;Yassin, Ali A.;Chen, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6121-6144
    • /
    • 2019
  • Numerous privacy-preserving authentication schemes have been proposed but vehicular ad hoc networks (VANETs) still suffer from security and privacy issues as well as computation and communication overheads. In this paper, we proposed a robust conditional privacy-preserving authentication scheme based on pseudonym root with cuckoo filter to meet security and privacy requirements and reduce computation and communication overheads. In our proposed scheme, we used a new idea to generate pseudonyms for vehicles where each on-board unit (OBU) saves one pseudonym, named as "pseudonym root," and generates all pseudonyms from the same pseudonym. Therefore, OBU does not need to enlarge its storage. In addition, the scheme does not use bilinear pairing operation that causes computation overhead and has no certification revocation list that leads to computation and communication overheads. The proposed scheme has lightweight mutual authentication among all parties and just for once. Moreover, it provides strong anonymity to preserve privacy and resists ordinary attacks. We analyzed our proposed scheme and showed that it meets security and privacy requirements of VANETs and is more efficient than traditional schemes. The communication and computation overheads were also discussed to show the cost-effectiveness of the proposed scheme.

An Efficient Anonymous Authentication Scheme with Secure Communication in Intelligent Vehicular Ad-hoc Networks

  • Zhang, Xiaojun;Mu, Liming;Zhao, Jie;Xu, Chunxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3280-3298
    • /
    • 2019
  • Vehicular ad-hoc networks (VANETs) have become increasingly significant in intelligent transportation systems, they play a great role in improving traffic safety and efficiency. In the deployment of intelligent VANETs, intelligent vehicles can efficiently exchange important or urgent traffic information and make driving decisions. Meanwhile, secure data communication and vehicle's identity privacy have been highlighted. To cope with these security issues, in this paper, we construct an efficient anonymous authentication scheme with secure communication in intelligent VANETs. Combing the ElGamal encryption technique with a modified Schnorr signature technique, the proposed scheme provides secure anonymous authentication process for encrypted message in the vehicle-to-infrastructure communication model, and achieves identity privacy, forward security, and reply attack resistance simultaneously. Moreover, except the trusted authority (TA), any outside entity cannot trace the real identity of an intelligent vehicle. The proposed scheme is designed on an identity-based system, which can remove the costs of establishing public key infrastructure (PKI) and certificates management. Compared with existing authentication schemes, the proposed scheme is much more practical in intelligent VANETs.

An Efficient Authentication Protocol between Vehicle and Communication Infrastructure for Intelligent Vehicular Networks (지능형 차량 이동네트워크 환경에서 차량과 통신설비간의 효율적인 인증프로토콜)

  • Hwang, Byung-Hee;Kim, Bum-Han;Lee, Dong-Hoon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.500-503
    • /
    • 2008
  • Vehicular Ad hoc Networks have attracted extensive attentions in recent years for their promises in improving safety and enabling other value-added services. Security and privacy are two integrated issues in the deployment of vehicular networks. Privacy-preserving authentication is a key technique in addressing these two issues. We propose a hash chain based authentication protocol that preserves the user privacy. We show that the our scheme can efficiently authenticate users. Name of Our protocol is

  • PDF