• Title/Summary/Keyword: Vehicular Channels

Search Result 27, Processing Time 0.022 seconds

ISI and PAPR Immune IEEE 802.11p Channels Based on Single-Carrier Frequency Domain Equalizer

  • Ali, Ahmed;Dong, Wang;Renfa, Li;Eldesouky, Esraa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5513-5529
    • /
    • 2016
  • Doppler Effect is a prominent obstacle in vehicular networks, which dramatically increase the Bit-Error-Rate (BER). This problem is accompanied with the presence of the Orthogonal Frequency Division Multiplexing (OFDM) systems in which the Doppler shift interrupts the subcarriers orthogonality. Additionally, Inter-Symbol Interference (ISI) and high Peak-to-Average Power Ratio (PAPR) are likely to occur which corrupt the received signal. In this paper, the single-carrier combined with the frequency domain equalizer (SC-FDE) is utilized as an alternative to the OFDM over the IEEE 802.11p uplink vehicular channels. The Minimum Mean Squared Error (MMSE) and Zero-Forcing (ZF) are employed in order to study the impact of these equalization techniques along with the SC-FDE on the propagation medium. In addition, we aim to enhance the BER, improve the transmitted signal quality and achieve ISI and PAPR mitigation. The proposed schemes are investigated and we found that the MMSE outperforms the ZF equalization under different Doppler shift effects and modulations.

CRL Distribution Method based on the T-DMB Data Service for Vehicular Networks (차량통신에서 T-DMB 데이터 서비스에 기반한 인증서 취소 목록 배포 기법)

  • Kim, Hyun-Gon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • There is a consensus in the field of vehicular network security that public key cryptography should be used to secure communications. A certificate revocation list (CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipment as well as to increase the overall security and safety of vehicular networks. Thus, a major challenge in vehicular networks is how to efficiently distribute CRLs. This paper proposes a CRL distribution method aided by terrestrial digital multimedia broadcasting (T-DMB). By using T-DMB data broadcasting channels as alternative communication channels, the proposed method can broaden the network coverage, achieve real-time delivery, and enhance transmission reliability. Even if roadside units are not deployed or only sparsely deployed, vehicles can obtain recent CRLs from the T-DMB infrastructure. A new transport protocol expert group (TPEG) CRL application was also designed for the purpose of broadcasting CRLs over the T-DMB infrastructure.

A Distributed LT Codes-based Data Transmission Technique for Multicast Services in Vehicular Ad-hoc Networks

  • Zhou, Yuan;Fei, Zesong;Huang, Gaishi;Yang, Ang;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.748-766
    • /
    • 2013
  • In this paper, we consider an infrastructure-vehicle-vehicle (I2V2V) based Vehicle Ad-hoc Networks (VANETs), where one base station multicasts data to d vehicular users with the assistance of r vehicular users. A Distributed Luby Transform (DLT) codes based transmission scheme is proposed over lossy VANETs to reduce transmission latency. Furthermore, focusing on the degree distribution of DLT codes, a Modified Deconvolved Soliton Distribution (MDSD) is designed to further reduce the transmission latency and improve the transmission reliability. We investigate the network behavior of the transmission scheme with MDSD, called MDLT based scheme. Closed-form expressions of the transmission latency of the proposed schemes are derived. Performance simulation results show that DLT based scheme can reduce transmission latency significantly compared with traditional Automatic Repeat Request (ARQ) and Luby Transform (LT) codes based schemes. In contrast to DLT based scheme, the MDLT based scheme can further reduce transmission latency and improve FER performance substantially, when both the source-to-relay and relay-to-sink channels are erasure channels.

A Novel Enhanced Decision-Directed Channel Estimation Scheme in High-Speed Mobile Environments (고속 이동 전파환경에서 결정지향 채널 추정 기법의 개선)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • It has been a big trend of the convergence technologies about communication systems and vehicular industry to improve safety and convenience. To achieve a number of infotainment vehicular applications, vehicles should transmit information with high reliability. A robust and accurate channel estimation scheme is of great importance to achieve the goal. In this paper, we present a novel enhanced decision-directed channel estimation scheme called FADP (Frequency Averaging Data Pilot) for dynamic time-varying vehicular channels in IEEE 802.11p. We use linear averaging filtering in frequency domain, and utilize the correlation characteristic of the channels between the adjacent two data symbols, update the CR in time domain to get more accuracy. Finally, analysis and simulation results reveal that compared with exist schemes, the proposed scheme has a good performance in mean square error (MSE) and bit error rate (BER).

A TDMA-based MAC protocol in hybrid-vehicular communication systems for preventing a chain-reaction collision on a highway (하이브리드 차량 통신 시스템에서 연쇄 추돌 사고 방지를 위한 TDMA 기반 MAC 프로토콜)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.179-184
    • /
    • 2012
  • A car accident on a highway occurs a chain-reaction collision because of a vehicle's fast velocity. In order to prevent it, the accident vehicle should broadcast a safe message to its neighbors. If there are many neighbor nodes, a frame collision probability is high. To solve this, it was proposed for a system as a previous study to send a safe message without frame-collision using separating channels. However, the separation of multiple channels make feasibility low because of increasing hardware's development cost and complexity. In this paper, we proposes a TDMA-based MAC protocol using a single channel. As a result, we show the frame reception success rate of our protocol was almost the same as the previous protocol.

Dynamic Channel Allocation Using SJF Scheduling in IEEE 802.11p/1609 Vehicular Network (IEEE 802.11p/1609 차량 네트워크에서 SJF(Shortest Job First) 스케쥴링을 이용한 동적 채널 할당 기법)

  • Jang, Hyun-Jun;Kwon, Yong-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.624-627
    • /
    • 2014
  • In vehicular network, the basic goal is to provide vehicle safety service and commercial service such as ITS(Intelligent Transportation System) or video, etc on the road. And most research concentrated on transportation of safety message in congestion situation. It is important to allocate channel for safety message in congestion situation, but providing suitable service is also important problem in vehicular network. For this reason, IEEE 1609.4 allocate 4 multiple service channels (SCHs) for non-safety data transfer. But, in congestion situation with many vehicles, the contention for channel acquisition between services becomes more severe. So services are provided improperly because of lack of service channel. This paper suggests dynamic channel allocation algorithm. The proposed algorithm is that RSU(RaodSide Unit) maintain and manage the information about service and status of channels. On based of the SJF(Shortest Job First) scheduling using those information, RSU selects the most appropriate channel among the 4 SCHs allocated by IEEE 1609.4 in network congestion situation.

  • PDF

Analysis of adjacent channel interference using distribution function for V2X communication systems in the 5.9-GHz band for ITS

  • Song, Yoo Seung;Lee, Shin Kyung;Lee, Jeong Woo;Kang, Do Wook;Min, Kyoung Wook
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.703-714
    • /
    • 2019
  • Many use cases have been presented on providing convenience and safety for vehicles employing wireless access in vehicular environments and long-term evolution communication technologies. As the 70-MHz bandwidth in the 5.9-GHz band is allocated as an intelligent transportation system (ITS) service, there exists the issue that vehicular communication systems should not interfere with each other during their usage. Numerous studies have been conducted on adjacent interfering channels, but there is insufficient research on vehicular communication systems in the ITS band. In this paper, we analyze the interference channel performance between communication systems using distribution functions. Two types of scenarios comprising adjacent channel interference are defined. In each scenario, a combination of an aggressor and victim network is categorized into four test cases. The minimum requirements and conditions to meet a 10% packet error rate are analyzed in terms of outage probability, packet error rate, and throughput for different transmission rates. This paper presents an adjacent channel interference ratio and communication coverage to obtain a satisfactory performance.

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity (순환 지연 다이버시티를 사용하는 OFDM 시스템을 위한 선형 프리코팅 기법)

  • Hui, Bing;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.197-204
    • /
    • 2009
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear preceding technique can significantly improve the performance of communication systems by exploiting the channel state in formation (CSI). In order to achieve enhanced performance, we propose applying linear preceding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is ass umed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

Deciding Priority of Safety Messages using Decision Tree in IEEE 802.11p/1609.4 Vehicular Network (802.11p/1609 차량네트워크에서 Decision Tree를 이용한 안전메세지 우선순위 결정 기법)

  • Baik, Hyein;Kwon, YongHo;Rhee, Byung Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.794-797
    • /
    • 2015
  • As the interest in VANET is increased, a study on the beacon message transmission between vehicles is actively being made. IEEE 802.11p/1609.4 standard is based on a multichannel system consisting of multiple service channels (SCH) and a control channel (CCH). Multiple SCHs are defined for nonsafety data transfer, while the CCH is used to broadcast safety messages called beacons and control messages (i.e., service advertisement messages). However, most messages broadcast in the only one CCH belong to safety application that must be contested in dense vehicular network. This paper suggests safety message transfer algorithm in dense vehicular congestion. The proposed algorithm is that the priority of safety messages is decided by decision tree and messages are stored in proper queues according to their priorities. Then, safety messages with higher priorities are sent in turn by CCH in the assigned time. The proposed algorithm decreases the beacon transmission delay and increase on the probability of a successful beacon reception in an IEEE 802.11p/1609.4-based network.

  • PDF

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity

  • Hui, Bing;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.253-264
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear precoding technique can significantly improve the performance of communication systems by exploiting the channel state information (CSI). In order to achieve enhanced performance, we propose applying linear precoding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is assumed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.