• Title/Summary/Keyword: Vehicles accident

Search Result 438, Processing Time 0.032 seconds

Rear-end Accident Models of Rural Area Signalized Intersections in the Cases of Cheongju and Cheongwon (청주.청원 지방부 신호교차로의 후미추돌 사고모형)

  • Park, Byoung-Ho;In, Byung-Chul
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2009
  • This study deals with the rear-end collisions in the rural aiea. The objectives of this study are 1) to analyze the characteristics of rear-end accidents of signalized intersections, and 2) to develop the accident models for Cheongju-Cheongwon. In pursing the above, this study gives the particular attentions to comparing the characters of urban and rural area. In this study, the dependent variables are the number of accidents and value of EPDO(equivalent property damage only), and independent variables are the traffic volumes and geometric elements. The main results analyzed are the followings. First, the statistical analyses show that the Poisson accident model using the number of accident as a dependant variable are statistically significant and the negative binomial accident model using the value of EPDO are statistically significant. Second, the independent variables of Poisson model are analyzed to be the ratio of high-occupancy vehicles, total traffic volume and the sum of exit/entry, and those of negative binomial regression are the main road width, total traffic volume and the ratio of high-occupancy vehicles. Finally, the specific independent variables to the rural area are the main road width, the ratio of high occupancy vehicle, and the sum exit/entry.

  • PDF

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.

An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles (자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구)

  • Yohan Park;Wonpil Park;Seungki Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

Analysis of Bus Accident Severity Using K-Means Clustering Model and Ordered Logit Model (K-평균 군집모형 및 순서형 로짓모형을 이용한 버스 사고 심각도 유형 분석 측면부 사고를 중심으로)

  • Lee, Insik;Lee, Hyunmi;Jang, Jeong Ah;Yi, Yongju
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.69-77
    • /
    • 2021
  • Although accident data from the National Police Agency and insurance companies do not know the vehicle safety, the damage level information can be obtained from the data managed by the bus credit association or the bus company itself. So the accident severity was analyzed based on the side impact accidents using accident repair cost. K-means clustering analysis separated the cost of accident repair into 'minor', 'moderate', 'severe', and 'very severe'. In addition, the side impact accident severity was analyzed by using an ordered logit model. As a result, it is appeared that the longer the repair period, the greater the impact on the severity of the side impact accident. Also, it is appeared that the higher the number of collision points, the greater the impact on the severity of the side impact accident. In addition, oblique collisions of the angle of impact were derived to affect the severity of the accident less than right angle collisions. Finally, the absence of opponent vehicle and large commercial vehicles involved accidents were shown to have less impact on the side impact accident severity than passenger cars.

A Study on the Safety of Passing-type Climbing Lanes in Expressways using C-G Method (비교그룹방법을 이용한 고속도로 추월차로형 오르막차로 안전성 연구)

  • Kim, Bong Soo;Kim, Sang-Gu;Yun, Ilsoo;Oh, Young-Tae;Hong, Doo-Pyo;Lee, Kang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.99-109
    • /
    • 2014
  • PURPOSES : Climbing lanes on expressways managed by the Korea Expressway Corporation (KEC) have been hot potatoes due to conflicts between slow-moving vehicles such as trucks and other vehicles at the merging section as well as the less popularity with the slow-moving vehicles. In order to resolve such problems, KEC has altered existing climbing lanes to passing-type climbing lanes in 1999. The new type of climbing lanes showed an apparent improvement in mobility. For example, the speeds of vehicles using both climbing lane and other lanes improved a lot. However, there has been no clear evidence about improved safety. METHODS : This research effort was initiated to evaluate the safety of the new passing-type climbing lanes using the comparison-group(CG) method based on three-year-long traffic accident data sets before and after the change, respectively. RESULTS : The passing-type climbing lanes showed twice increased traffic accidents even though the traffic accidents on old type climbing lanes increased 1.1% during the same periods. In addition, in-depth study, the merging area of the passing-type climbing lanes was found out to be the weakest section where 43.8% traffic accidents out of total traffic accidents happened. It is noted that the merging area of the old type climbing showed only 25.0% traffic accidents. CONCLUSIONS : The new passing-type climbing lanes were found to be weak in terms of safety when compared with the old type climbing lanes. Especially, the merging area should be improved to reduce the risk of traffic conflicts between slow-moving vehicles and other vehicles.

Evaluating Traffic Safety Benefits of Electronic Stability Control System Using a Meta Analysis: Focused on Accident Rates (메타분석을 이용한 차체자세제어장치(ESC)의 교통안전성 효과분석: 사고율 분석을 중심으로)

  • OH, Minsoo;YOUN, Seokmin;JEONG, Eunbi;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.307-320
    • /
    • 2017
  • The objective of this study is to identify the effectiveness of ESC(Electronic Stability Control) based on a meta analysis technique. Accident Rate, Fatal Crash Rate, Loss of Control Crash Rate were set as indexes of traffic safety evaluation. Also, reviews on the effectiveness of ESC were collected using keyword, 'ESC'. As a result, the Effect size of accident rate odd ratio was 0.90. When ESC system was applied on vehicles, accident rate decreased by 10%. Also, the Effect size of fatal crash rate odd ratio was 0.64. When ESC system was applied on vehicles, fatal crash rate decreased by 36%. Lastly, the Effect size of loss of control crash rate odd ratio was 0.73. When ESC system was applied on vehicles, loss of control crash rate decreased by 27%. The outcome of this study would be effectively used for developing polices and regulations for ESC installation obligation of commercial vehicles.

Discriminant Analysis of Factors Affecting Traffic Accident Severity During Daytime and Nighttime (판별분석을 활용한 주·야간 고속도로 교통사고 영향요인 비교연구)

  • Kim, Kyoungtae;Lee, Soobeom;Choi, Jihye;Park, Sinae;Seo, Geumyeol
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • PURPOSES : Low visibility caused by dark surroundings at nighttime affects the likelihood of accidents, and various efforts, such as installing road safety facilities, have been made to reduce accidents at night. Despite these efforts, the nighttime severity index (SI) in Korea was higher than the daytime SI during 2011-2014. This study determined the factors affecting daytime and nighttime accident severity through a discriminant analysis. METHODS : Discriminant analysis. RESULTS : First, drowsiness, lack of attention, and lighting facilities affected both daytime and nighttime accident severity. Accidents were found to be caused by a low ability to recognize the driving conditions and a low obstacle avoidance capability. Second, road conditions and speeding affected only the daytime accident severity. Third, failure to maintain a safe distance significantly affected daytime accident severity and nonsignificantly affected nighttime accident severity. The majority of such accidents were caused by rear-end collisions of vehicles driving in the same direction; given the low relative speed difference in such cases, the shock imparted by the accidents was minimal. CONCLUSIONS : Accidents caused by a failure to maintain a safe distance has lower severity than do accidents caused by other factors.

Research on Vehicle Crash Compatibility Through Car to Car Frontal Crash Test (차 대 차 정면충돌시험을 통한 상호안전성 연구)

  • Park, In-Song;Kim, Guan-Hee;Hong, Seung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Since 2000, sports utility vehicles(SUVs) occupy about 40% of domestic vehicle sales. As sports utility vehicle sales are increased the probability of crash accident between SUVs and passenger vehicles increases. Generally, SUVs are heavier than passenger vehicles and their drive height and front end stillness are higher than passenger vehicles. Because of these characteristics SUVs cause more severe injury and fatal injury in SUV to passenger vehicle head-on impact. To evaluate SUV's aggessivity to passenger vehicle, we carried out SUV to passenger vehicle head-on crash test. And finally the way how to reduce incompatibility between SUVs and passenger vehicles is suggested.

Evaluation of Accident Prevention Performance of Vision and Radar Sensor for Major Accident Scenarios in Intersection (교차로 주요 사고 시나리오에 대한 비전 센서와 레이더 센서의 사고 예방성능 평가)

  • Kim, Yeeun;Tak, Sehyun;Kim, Jeongyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.96-108
    • /
    • 2017
  • The current collision warning and avoidance system(CWAS) is one of the representative Advanced Driver Assistance Systems (ADAS) that significantly contributes to improve the safety performance of a vehicle and mitigate the severity of an accident. However, current CWAS mainly have focused on preventing a forward collision in an uninterrupted flow, and the prevention performance near intersections and other various types of accident scenarios are not extensively studied. In this paper, the safety performance of Vision-Sensor (VS) and Radar-Sensor(RS) - based collision warning systems are evaluated near an intersection area with the data from Naturalistic Driving Study(NDS) of Second Strategic Highway Research Program(SHRP2). Based on the VS and RS data, we newly derived sixteen vehicle-to-vehicle accident scenarios near an intersection. Then, we evaluated the detection performance of VS and RS within the derived scenarios. The results showed that VS and RS can prevent an accident in limited situations due to their restrained field-of-view. With an accident prevention rate of 0.7, VS and RS can prevent an accident in five and four scenarios, respectively. For an efficient accident prevention, a different system that can detect vehicles'movement with longer range than VS and RS is required as well as an algorithm that can predict the future movement of other vehicles. In order to further improve the safety performance of CWAS near intersection areas, a communication-based collision warning system such as integration algorithm of data from infrastructure and in-vehicle sensor shall be developed.