• 제목/요약/키워드: Vehicle-based kinematic survey

Search Result 4, Processing Time 0.017 seconds

Strategies of Updating Road Framework Data by a Vehicle-based Kinematic Survey (차량이동측량에 의한 도로 기본지리정보 갱신방안에 관한 연구)

  • Yoon, ha-Su;Lee, Jin-Soo;Seo, Chang-Wan;Choi, Yun-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2007
  • The purpose of this study is to maximize the use of framework data by a method for updating road framework data using a economical, rapid, and accurate Vehicle-based kinematic survey to get the latest road data among "transportation framework data" which was built in 2003. We collected data using a Vehicle-based kinematic survey with DGPS (Differential Global Positioning System) in Daejeon and Pyeongtaek city and verified the accuracy of line and point features between surveying and previous results. The result showed that Daejeon city which is located near GPS CORS (Continuously Operating Reference Station)s and receive a signal well had lower errors than 1/5,000 digital base map, and Pyeongtaek city which is located far from the stations and receive a signal badly had errors beyond the limits. The study showed that postprocessing method or Total Station surveying should be used where signals cannot be detected well after analyzing a receiving rate from GPS CORSs, the stations of other organizations should be shared, and further studies are needed.

Experimental Analysis of Kinematic Network-Based GPS Positioning Technique for River Bathymetric Survey

  • Lee, Hungkyu;Lee, Jae-One;Kim, Hyundo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.221-233
    • /
    • 2016
  • This paper deals with performance assessment of the kinematic network-based GPS positioning technique with a view to using it for ellipsoidally referenced bathymetric surveys. To this end, two field trials were carried out on a land vehicle and a surveying vessel. Single-frequency GPS data acquired from these tests were processed by an in-house software which equips the network modeling algorithm with instantaneous ambiguity resolution procedure. The results reveals that ambiguity success rate based on the network model is mostly higher than 99.0%, which is superior to that of the single-baseline model. In addition, achievable accuracy of the technique was accessed at ${\pm}1.6cm$ and 2.7 cm with 95% confidence level in horizontal and vertical component respectively. From bathymetric survey at the West Nakdong River in Busan, Korea, 3-D coordinates of 2,011 points on its bed were computed by using GPS-derived coordinates, attitude, measured depth and geoid undulation. Note that their vertical coordinates are aligned to the geoid, the so-called orthometric height which is widely adopted in river engineering. Bathymetry was constructed by interpolating the coordinate set, and some discussion on its benefit was given at the end.

Inverted RTK system and its applications in Japan

  • Kanzaki, Masayuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.455-458
    • /
    • 2006
  • The Real Time Kinematic (RTK) technique is the most productive and accurate GPS positioning method today, as it can be determinate position within few centimeters instantly. This method is widely used for applications such as surveying, structure monitoring and machine guidance etc. In order to perform RTK processing for large scale systems (i.e. precise vehicle monitoring with many rovers), many expensive RTK receivers and same number of bidirectional communication units have to be installed to collect observation data communicate with the reference site and monitor its RTK solutions. Moreover, if applications require remote control or apply sensing instruments, we have to install computers at each rover. To limit expense and complexity of system management with a large number of rovers, we have developed server based RTK processing platform to share RTK function for all rovers. The system can be process many GPS stations with a single personal computer. we have also developed a specialized dual frequency GPS receiver unit without on-board RTK processing capability to reduce receiver cost in order to demonstrate the advantage of our server based RTK platform. This paper describes the concept of our server based RTK platform and specialized GPS receiver unit with existing applications in Japan.

  • PDF

Evaluation Scheme of the GPS Positional Accuracy for Dynamic Bus Route Information using SMB(Single Buffering Method) (단일 버퍼링 기법을 이용한 동적 버스 노선 정보의 GPS 위치 정확도 평가 방안)

  • Park, Hong-Gi;Joo, Yong-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.677-685
    • /
    • 2011
  • In order to enhance public transportation and to maintain information credibility, improvement of accuracy regarding route and positional information of public transport is very significant. There have been a variety of methods using GPS to measure accuracy of location-based services. However, the researches of evaluation regarding kinematic position of linear objects measured by vehicle/kinematic GPS are still insufficient. That's why our paper aims to suggest method of evaluation accuracy on a real-time bus route surveyed by GPS by SBM(Single Buffering Method). To make it come true, we compared the findings on the static and dynamic positioning by using PP(Point Positioning), DGPS and GPS/INS integrated systems and analyzed the accuracy and error effects among them, focusing on Anyang city. Consequently, we can find out that in case of P.P. comparing positioning accuracy between RTK DGPS and GPS/INS, both of them have survey result within a margin of error of 5m. More importantly, we can evaluate positional accuracy of each GPS system based on the work provision of a public survey such as error for P.P.(14.5m, 18.1m), DGPS(16.9m, 18.5m), and GPS/INS(18.4m, 18.5m). We are expecting that proposed method in our paper can be utilized in a wide range of categories such as feasibility testing of GPS field survey and high accuracy of positioning for Bus Information System.