• 제목/요약/키워드: Vehicle weight

검색결과 1,295건 처리시간 0.023초

이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석 (Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles)

  • 이용선;김상효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

발사체 추진제 탱크 수위 측정 및 제어 시스템 기초연구 (Fundamental Research on the Measurement and Control System of Level Sensor for Launch Vehicle Propellant Tanks)

  • 신동순;한상엽;조인현;이응신
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.393-396
    • /
    • 2008
  • Propellant consumption control for space launch vehicle can be achieved by propellant utilization system (PUS) and tank depletion system (TDS). In the course of developing new space launch vehicles, the main target of design is on reducing of space launch vehicle weight, which results in increasing both specific impulse and payload weight. The weights of space launch vehicles are generally allocated to structure, propulsion system, and propellants loaded. The quantity of propellants filled in propellant tanks may be estimated with the propellants actually consumed by propulsion system to complete its mission and the propellants left on-board at the time of engine shut-off. To minimize the remaining quantity of propellants on-board the supplying propellants' O/F ratio should be controlled from the certain time before engine shutdown. To control an O/F ratio, a control system, which accurately measures and compares the remainder of propellants in tanks and pipes, should be needed. This paper solely dedicates its contents to explore the merits and demerits of various level sensor, which is one of the important elements for PUS and TDS, and the transmission and control of signals within space launch vehicle.

  • PDF

고안전 에어백의 승객 분류를 위한 체압감지 센서를 위한 알고리즘 개발 (Algorithm development of a body pressure detection sensor for the occupant classification system)

  • 윤득선;오성록;송정훈;김병수;부광석
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.385-392
    • /
    • 2009
  • This paper describes the algorithm development of a new body pressure detection sensor for occupant classification system. U.S. Government has required that advanced airbag system should be installed to every automobiles after 2006 according to FMVSS 208 regulation. Therefore, Occupant Classification System should be provided the passenger with safety in order to protect the infants or children that sit in the front passenger seat. When an occupant sits on the chair of the vehicle, deployment of the airbag depends on passenger's weigh distribution and postures. Authors have been developed a new pattern recognition of passenger and weight distribution at the same time by Force Sensing Resistor for the safety.

서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

중량 궤도차량의 궤도 패드형상에 따른 내구성 해석의 융합 기술 연구 (Convergence Technique Study of Durability Analysis due to the Track Pad Shape of Track Vehicle with Heavy Weight)

  • 이정호;조재웅
    • 한국융합학회논문지
    • /
    • 제7권1호
    • /
    • pp.177-182
    • /
    • 2016
  • 중공업과 군사목적으로 사용되는 궤도차량은 고중량의 차체를 버티기 위해 차체에서 전달되는 하중으로 기동륜을 감싸고 있는 링크는 큰 힘을 받게 되는데, 이 발생된 힘은 궤도전체의 내구성 저하를 야기하게 된다. 본 논문에서는 3가지의 상용화된 궤도 패드의 형상들을 가진 모델들을 설계하고, 내구성 저하로 발생될 수 있는 궤도패드의 마모와 링크의 파손을 효과적으로 줄일 수 있는 모델을 고안하였다. 또한 본 연구 결과를 궤도차량 설계에 접목함으로써, 파손방지와 내구성향상을 위한 안전설계에 기여할 수 있으며, 패드 형상의 디자인적인 요소를 융합기술에 접목하여 그 미적인 감각을 나타낼 수 있다.

로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석 (Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine)

  • 이경재;양인영;이양지;김춘택;양수석
    • 한국추진공학회지
    • /
    • 제19권6호
    • /
    • pp.10-18
    • /
    • 2015
  • 로켓 기반 공기흡입추진(RBCC : Rocket Based Combined Cycle) 엔진이 적용된 재사용 발사체의 요구 중량 및 성능을 분석하고 예측하였다. RBCC 엔진을 위해 개발한 엔진 모델과 비행체 궤적 모델을 통합하여 RBCC 기반 재사용 발사체의 궤적 및 성능계산 모델을 개발하였으며, 기존 논문의 결과와 비교함으로써 검증하였다. 개발된 모델과 기존 논문을 바탕으로 총 이륙중량 15톤의 재사용 발사체에 대한 무게분석과 엔진의 요구 조건을 도출하였으며, 엔진의 모드 전환 마하수 변화 등에 따른 비행체의 추진제 요구량 변화를 분석하였다.

승용차의 $CO_2$ 배출가스 영향인자 특성에 관한 연구 (Study on the Characteristics of Carbon Dioxide Emissions Factors from Passenger Cars)

  • 류정호;김대욱;유영숙;엄명도;김종춘;이성욱;백두성
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.10-15
    • /
    • 2009
  • Emission regulations on greenhouse gas(GHG) in automobiles have been stringent because of global warming effect. Over 90% of total GHG emission are carbon dioxides and about 20% of this $CO_2$ emission are emitted from automobiles. In this study, 110 vehicles were tested on a chassis dynamometer and $CO_2$ emissions and fuel economy were measured in order to investigate the characteristics of $CO_2$ emission factor from passenger vehicles which are the most dominant vehicle type in Korea. The characteristics of emissions in accordance with displacements, gross vehicle weight, NIER and CVS-75 speed mode were discussed. It was found that vehicles having larger displacement, heavier gross vehicle weight, automatic transmission and specially at cold start emitted more $CO_2$ emissions. From these results, correlation between $CO_2$ emission and fuel economy was also obtained. This study may contribute to evaluate domestic greenhouse gas emissions and establish national policies on climate changes in future.

차량용 중공 스테빌라이저바의 내측 쇼트피닝 효과 (Effect of Inner Shot Peening Process for Tubular Stabilizer Bars)

  • 서유원;서진원;이원기;김진영
    • 대한기계학회논문집A
    • /
    • 제41권11호
    • /
    • pp.1119-1124
    • /
    • 2017
  • 차량 하부에 장착된 스테빌라이저바는 차량이 곡선 구간을 선회할 때 차량의 자체를 유지해 줌으로서 차량 주행을 보다 편안하게 해 준다. 스테빌라이저바는 중실과 중공 타입 2가지가 있으며, 차량의 경량화를 위해 중공 형태의 스테빌라이저바의 적용이 늘고 있다. 차량의 경량화를 위한 중공 스테빌라이저바는 중실에 비해 무게가 34% 이상 경량화가 가능하지만 경량화 비율이 높아질수록 제품의 내구 수명은 급격하게 감소하는 경향을 나타낸다. 이러한 내구 수명 감소에 대한 대책으로서 소재의 고강도 및 고경도 소재를 적용하거나 쇼트피닝 공법을 개선 하는 등의 노력을 통해 내구 수명을 보장할 수 있다.