• 제목/요약/키워드: Vehicle stability control system

검색결과 355건 처리시간 0.031초

주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증 (Evaluation of Vehicle Stability Control System Using Driving Simulator)

  • 정태영;이건복;이경수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발 (An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability)

  • 허현동;이경수;서지윤;김종갑
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

String Stability를 보장하는 정지/서행 순항제어 시스템 (A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability)

  • 박요한;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

통합 샤시 제어를 위한 횡방향 안전성 판단 조건에 관한 연구 (An Investigation of the Lateral Stability Criteria for Integrated Chassis Control)

  • 안국진;좌은혁;고영일;이경수;손기모
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.26-32
    • /
    • 2017
  • This paper presents the lateral stability criteria for integrated chassis control. To determine the intervention timing of chassis control system, the lateral stability criteria is needed. The proposed lateral stability criteria is based on velocity-yawrate gain domain to determine whether vehicle is stable. If the yawrate gain violates the proposed criteria, the stability of the vehicle is considered as unstable. Characteristic velocity and critical velocity are employed to distinguish lateral stability criteria. The inside of the two boundaries is stable and the outside is unstable. If yawrate gain of vehicle violates the lateral stability criteria, the chassis control begin to intervene. To validate the lateral stability criteria, both computer simulations and vehicle test are conducted with respect to circular turn scenario. The proposed lateral stability criteria makes it possible to reduce intervention of chassis control system.

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

차량 안정성 향상을 위한 제어기 설계 (Design of Control Logics for Improving Vehicle Dynamic Stability)

  • 허승진;박기홍;이경수;나혁민;백인호
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.165-172
    • /
    • 2000
  • The VDC(Vehicle Dynamic Control) is a control system whose target is to improve stability of a vehicle under lateral motion. A lateral vehicle motion, especially on a slippery road, can lead to a hazardous situation, and the situation can even worsen by the driver`s inappropriate response. In this paper, two VDC systems, a fuzzy-based controller and an LQR-based controller have been developed. The controllers take as input the yaw rate and the sideslip angle of either body or rear wheel, and they yield the direct yaw moment signal by which the vehicle can gain stability during cornering. Simulations have been conducted to evaluate the performance of the control system. The results indicated that the controllers can successfully improve vehicle stability under potentially dangerous driving conditions.

  • PDF

Motion Sensor Fault Detection and Failsafe Logic for Vehic1e Stability Control Systems (VSCs)

  • Yi, Kyongsu;Min, Kyongchan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1961-1968
    • /
    • 2004
  • The design of a reliable and failsafe control system requires that sensor failures be detected and identified within acceptable time limit so that system malfunction can be prevented. This paper presents a model-based approach to sensor fault detection with applications to vehicle stability control systems. The effectiveness of the proposed method is illustrated through test data-based evaluation. Vehicle test data-based evaluation results show that the proposed fault management scheme can be used for the design of a failsafe VSCs.

제어시점에 따른 차량 안정성 제어 시스템의 제어 경향 (An Investigation of Con01 Threshold of Vehicle Stability Control System)

  • 정태영;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.195-201
    • /
    • 2005
  • In conventional Vehicle Stability Control (VSC) System, a control threshold is designed by average driver characteristics. Despite the stabilizing effort, VSC causes redundancy to an expert driver. An advanced VSC which has flexibility on its control property is proposed in this study. By using lateral velocity estimator, a control threshold is determined on side slip angle and angular velocity phase plane. Vehicle planar motion model based sliding controller is modified with respect to various control thresholds. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics. A VSC with variable control thresholds would provide an improvement compared to a VSC with a constant threshold.

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

차량 주행성능 향상을 위한 AFS 와 ESP 의 협조제어에 관한 연구 (A Study on Integrated Control of AFS and ESP for the improvement of vehicle handing performance)

  • 박인혜;박기홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.511-514
    • /
    • 2005
  • This paper propose an advanced control strategy to improve vehicle handling and directional stability by integrating Active Front Steering(AFS) with Electronic Stability Program(ESP) . The effect of the integrated control system on the vehicle handling characteristics and directional stability is studied through a close loop computer simulation of and eight degree of freedom nonlinear vehicle model and driver model. Simulation results confirm the effectiveness of the proposed control system and the overall improvements in vehicle handling and directional stability

  • PDF