• Title/Summary/Keyword: Vehicle sensing data

Search Result 142, Processing Time 0.023 seconds

A Sensing Data Collection Strategy in Software-Defined Mobile-Edge Vehicular Networks (SDMEVN) (소프트웨어 정의 모바일 에지 차량 네트워크(SDMEVN)의 센싱 데이터 수집 전략)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.62-65
    • /
    • 2018
  • This paper comes out with the study on sensing data collection strategy in a Software-Defined Mobile Edge vehicular networking. The two cooperative data dissemination are Direct Vehicular cloud mode and edge cell trajectory prediction decision mode. In direct vehicular cloud, the vehicle observe its neighboring vehicles and sets up vehicular cloud for cooperative sensing data collection, the data collection output can be transmitted from vehicles participating in the cooperative sensing data collection computation to the vehicle on which the sensing data collection request originate through V2V communication. The vehicle on which computation originate will reassemble the computation out-put and send to the closest RSU. The SDMEVN (Software Defined Mobile Edge Vehicular Network) Controller determines how much effort the sensing data collection request requires and calculates the number of RSUs required to support coverage of one RSU to the other. We set up a simulation scenario based on realistic traffic and communication features and demonstrate the scalability of the proposed solution.

  • PDF

Study about Road-Surrounding Environment Analysis and Monitoring Platform based on Multiple Vehicle Sensors (다중 차량센서 기반 도로주변환경 분석 및 모니터링 플랫폼 연구)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Hyunjung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1505-1515
    • /
    • 2016
  • The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

Estimation trial for rice production by simulation model with unmanned air vehicle (UAV) in Sendai, Japan

  • Homma, Koki;Maki, Masayasu;Sasaki, Goshi;Kato, Mizuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.46-46
    • /
    • 2017
  • We developed a rice simulation model for remote-sensing (SIMRIW-RS, Homma et al., 2007) to evaluate rice production and management on a regional scale. Here, we reports its application trial to estimate rice production in farmers' fields in Sendai, Japan. The remote-sensing data for the application was periodically obtained by multispectral camera (RGB + NIR and RedEdge) attached with unmanned air vehicle (UAV). The airborne images was 8 cm in resolution which was attained by the flight at an altitude of 115 m. The remote-sensing data was relatively corresponded with leaf area index (LAI) of rice and its spatial and temporal variation, although the correspondences had some errors due to locational inaccuracy. Calibration of the simulation model depended on the first two remote-sensing data (obtained around one month after transplanting and panicle initiation) well predicted rice growth evaluated by the third remote-sensing data. The parameters obtained through the calibration may reflect soil fertility, and will be utilized for nutritional management. Although estimation accuracy has still needed to be improved, the rice yield was also well estimated. These results recommended further data accumulation and more accurate locational identification to improve the estimation accuracy.

  • PDF

VEHICLE CRASH ANALYSIS FOR AIRBAG DEPLOYMENT DECISION

  • Hussain, A.;Hannan, M.A.;Mohamed, A.;Sanusi, H.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.179-185
    • /
    • 2006
  • Airbag deployment has been responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decision. This misfortune has led the authorities and the industries to pursue uniquely designed airbags incorporating crash-sensing technologies. This paper provides a thorough discussion underlying crash sensing algorithm approaches for the subject matter. Unfortunately, most algorithms used for crash sensing still have some problems. They either deploy at low severity or fail to trigger the airbag on time. In this work, the crash-sensing algorithm is studied by analyzing the data obtained from the variables such as (i) change of velocity, (ii) speed of the vehicle and (iii) acceleration. The change of velocity is used to detect crash while speed of the vehicle provides relevant information for deployment decision. This paper also demonstrates crash severity with respect to the changing speed of the vehicle. Crash sensing simulations were carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes. These toolboxes are also used to validate the results obtained from the simulated experiments of crash sensing, airbag deployment decision and its crash severity detection of the proposed system.

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.

Bridge load testing and rating: a case study through wireless sensing technology

  • Shoukry, Samir N.;Luo, Yan;Riad, Mourad Y.;William, Gergis W.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.661-678
    • /
    • 2013
  • In this paper, a wireless sensing system for structural field evaluation and rating of bridges is presented. The system uses a wireless platform integrated with traditional analogue sensors including strain gages and accelerometers along with the operating software. A wireless vehicle position indicator is developed using a tri-axial accelerometer node that is mounted on the test vehicle, and was used for identifying the moving truck position during load testing. The developed software is capable of calculating the theoretical bridge rating factors based on AASHTO Load and Resistance Factor Rating specifications, and automatically produces the field adjustment factor through load testing data. The sensing system along with its application in bridge deck rating was successfully demonstrated on the Evansville Bridge in West Virginia. A finite element model was conducted for the test bridge, and was used to calculate the load distribution factors of the bridge deck after verifying its results using field data. A confirmation field test was conducted on the same bridge and its results varied by only 3% from the first test. The proposed wireless sensing system proved to be a reliable tool that overcomes multiple drawbacks of conventional wired sensing platforms designed for structural load evaluation of bridges.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Research on Key Technologies of UAV Remote Sensing Operation Systems

  • Yan, Lei;Lu, Shuqiang;Zhang, Xuehu;Zhao, Hongying;Yang, Shaowen;Zhao, Jicheng;Li, Peijun;Wang, Kedong;Yao, Yuanhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1377-1379
    • /
    • 2003
  • Satellite and aerial remote sensing (RS) techniques have been provided to collect spatial data globally over the last few decades. However in developing countries such as China, there is still an urgent need for low cost and high resolution RS data. As an emerging RS platform, commercial Unmanned Aerial Vehicle (UAV) integrated with state-of-the-art sensors and information technologies has the potential to become a low cost tool to meet application demands. In this paper, the architecture of UAV RS operation system is mentioned. Moreover, key technologies in UAV RS system are analyzed and current work is reported.

  • PDF

The Application of BP and RBF Neural Network Methods on Vehicle Detection in Aerial Imagery

  • Choi, Jae-Young;Jang, Hyoung-Jong;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2008
  • This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.