• Title/Summary/Keyword: Vehicle safety message

Search Result 70, Processing Time 0.022 seconds

Effective Emergency-Warning Message Transmission in the Vehicle-to-Vehicle Communication Environment (차량 간 통신 환경에서 효과적인 위험 경고 메시지 전송 방안)

  • Byun, Jae-Uk;Kwon, Sung-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose an algorithm to improve collision avoidance in Vehicle-to-Vehicle (V2V) networks based on IEEE 802.11p. Since IEEE 802.11p adopts CSMA/CA as a multiple access scheme and an emergency warning message (EWM) is delivered to behind vehicles in a multi-hop manner, due to transmission collision, the more vehicles in the vehicle chain results in a longer delay. The longer delay increases the possibility of a rear-end collision. In order to ensure message reception with low latency, we consider implicit acknowledgement of a broadcasted EWM message and propose an algorithm to reduce redundant message transactions, called Two-Way Implicit Acknowledgement (TWIA). By simulations, we show that our proposed algorithm can reduce the latency until the last car receives the message by 9% and the success rate every car receives the message within 0.7sec by 12% at 100 fixed-number-of-car environment.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

Efficient Privacy Preserving Anonymous Authentication Announcement Protocol for Secure Vehicular Cloud Network

  • Nur Afiqah Suzelan Amir;Wan Ainun Mior Othman;Kok Bin Wong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1450-1470
    • /
    • 2023
  • In a Vehicular Cloud (VC) network, an announcement protocol plays a critical role in promoting safety and efficiency by enabling vehicles to disseminate safety-related messages. The reliability of message exchange is essential for improving traffic safety and road conditions. However, verifying the message authenticity could lead to the potential compromise of vehicle privacy, presenting a significant security challenge in the VC network. In contrast, if any misbehavior occurs, the accountable vehicle must be identifiable and removed from the network to ensure public safety. Addressing this conflict between message reliability and privacy requires a secure protocol that satisfies accountability properties while preserving user privacy. This paper presents a novel announcement protocol for secure communication in VC networks that utilizes group signature to achieve seemingly contradictory goals of reliability, privacy, and accountability. We have developed the first comprehensive announcement protocol for VC using group signature, which has been shown to improve the performance efficiency and feasibility of the VC network through performance analysis and simulation results.

Timing Data Optimize of Traffic Intersection C-ITS Message Set for LTE-based V2X in-vehicle Devices (LTE 기반 차량용 V2X 통신단말에 대한 신호 교차로 C-ITS 메시지의 타이밍 데이터 최적화 기법)

  • Park, Su-In;Seo, Woo-Chang;Yang, Eun-Ju;Seo, Dae-Wha
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • Recently, the introduction of Cooperative Intelligent Transport Systems (C-ITS) has been attempted to solve the limitation of only the sensor of the vehicle itself. For example, vehicles traveling at intersections can drive more safely through C-ITS. By using V2X communication of WAVE and LTE, the driver can receive the status and time of traffic lights. However, LTE has a larger transmission delay time than WAVE, so timimg data may not match in real time. In this paper, using the SPaT message, it was confirmed that LTE has a larger C-ITS service transmission delay time than WAVE. Finally, it was confirmed that the timing data of SPaT provided by LTE corrected by the algorithm is similar to SPaT provided by WAVE. It was confirmed that safer intersection driving is possible based on real-time.

Clustering based Routing Algorithm for Efficient Emergency Messages Transmission in VANET (차량 통신 네트워크에서 효율적인 긴급 메시지 전파를 위한 클러스터링 기반의 라우팅 알고리즘)

  • Kim, Jun-Su;Ryu, Min-Woo;Cha, Si-Ho;Lee, Jong-Eon;Cho, Kuk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3672-3679
    • /
    • 2012
  • Vehicle Ad hoc Network (VANET) is next-generation network technology to provide various services using V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure). In VANET, many researchers proposed various studies for the safety of drivers. In particular, using the emergency message to increase the efficiency of traffic safety have been actively studied. In order to efficiently transmit to moving vehicle, to send a quick message to as many nodes is very important via broadcasting belong to communication range of vehicle nodes. However, existing studies have suggested a message for transmission to the communication node through indiscriminate broadcasting and broadcast storm problems, thereby decreasing the overall performance has caused the problem. In addition, theses problems has decreasing performance of overall network in various form of road and high density of vehicle node as urban area. Therefore, this paper proposed Clustering based Routing Algorithm (CBRA) to efficiently transmit emergency message in high density of vehicle as urban area. The CBRA managed moving vehicle via clustering when vehicle transmit emergency messages. In addition, we resolve linkage problem between vehicles according to various form of road. The CBRA resolve link brokage problem according to various form of road as urban using clustering. In addition, we resolve broadcasting storm problem and improving efficacy using selection flooding method. simulation results using ns-2 revealed that the proposed CBRA performs much better than the existing routing protocols.

A Beacon-Based Trust Management System for Enhancing User Centric Location Privacy in VANETs

  • Chen, Yi-Ming;Wei, Yu-Chih
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 2013
  • In recent years, more and more researches have been focusing on trust management of vehicle ad-hoc networks (VANETs) for improving the safety of vehicles. However, in these researches, little attention has been paid to the location privacy due to the natural conflict between trust and anonymity, which is the basic protection of privacy. Although traffic safety remains the most crucial issue in VANETs, location privacy can be just as important for drivers, and neither can be ignored. In this paper, we propose a beacon-based trust management system, called BTM, that aims to thwart internal attackers from sending false messages in privacy-enhanced VANETs. To evaluate the reliability and performance of the proposed system, we conducted a set of simulations under alteration attacks, bogus message attacks, and message suppression attacks. The simulation results show that the proposed system is highly resilient to adversarial attacks, whether it is under a fixed silent period or random silent period location privacy-enhancement scheme.

Usage Techniques of a Truncated Message Authentication Code for In-Vehicle Controller Area Network (자동차 내부 네트워크를 위한 경량 메시지 인증 코드 사용기법)

  • Woo, Samuel;Lee, Sang-Bum
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.127-135
    • /
    • 2017
  • Recently, the most brand new vehicles contain a lot of ECU for comfortable and safety driving environments. For efficient communication network among ECUs, almost car manufactures use CAN protocol which enables to decrease the number of communication lines dramatically and ensures higher data transmission reliability. However, CAN dose not ensure authentication of CAN data frame. So it is vulnerable to replay-attack on CAN data frame. This paper proposes the practical message authentication technique for In-vehicle CAN. To transmit data and MAC together, it is very useful to use the short length of MAC after considering limited space of CAN data frame. However to ensure safety of MAC, additional technique is required. We suggested a message authentication technique that can be usefully applied to build a safety network inside the vehicle because it considers limited data payload of CAN.

A V2V Transmission Scheme for Safety Message Dissemination in Platooning (군집주행 차량의 안전 메시지 전달을 위한 V2V 전송 기법)

  • Ahn, Woojin;Hong, Hanseul;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.548-553
    • /
    • 2019
  • Along with advanced vehicle to vehicle (V2V) communication technologies, platooning is regarded as one of the most promising form of autonomous driving solutions in order to increase road capacity. In this paper, we propose a novel V2V transmission scheme for safety message dissemination in platooning. The proposed scheme enhances the efficiency of channel access and multi-vehicle orthogonal frequency division multiple access (OFDMA) transmission by taking advantage of triggered uplink access technique and null data packet feedback report protocol introduced in the sixth generation WLAN standard, IEEE 802.11ax. The simulation results prove that the proposed scheme outperforms the conventional IEEE 802.11 transmission scheme throughout all measured vehicle density range.

OSEK OS Based Gateway for Interconnecting WAVE and CAN (WAVE와 CAN 연동을 위한 OSEK OS기반 게이트웨이)

  • Kim, Ju-Young;Seo, Hyun-Soo;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.133-141
    • /
    • 2014
  • Recently, various services are provided by using WAVE protocol for communication among neighboring vehicles. And in order to operate stable system, the gateway for interconnecting in and out vehicle networks is required. In this paper, we propose gateway interconnecting WAVE and CAN protocol. The proposed gateway based on OSEK OS consists of a communication layer, a message translator layer and a message management layer. In the communication layer, WAVE communication part and CAN communication part are designed to communicate with WAVE and CAN. And in the message management layer, message management layer functions to store the received messages and check errors with the message. Based on these functions, experiment was conducted to analyze performance of the gateway with two scenarios such as transmitting periodically BSM as a message structure for safety services in vehicle-to-vehicle communications and responding to road side equipments requiring in-vehicle information. As a result of test, we verify our gateway performance by analyzing measured time in test scenarios.

Blockchain-Assisted Trust Management Scheme for Securing VANETs

  • Ahmed, Waheeb;Wu, Di;Mukathie, Daniel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.609-631
    • /
    • 2022
  • The main goal of VANETs is to improve the safety of all road users. Therefore, the accuracy and trustworthiness of messages transmitted in VANETs are essential, given that life may rely on them. VANETs are provided with basic security services through the use of public key infrastructure-based authentication. However, the trust of users is still an open issue in VANETs. It is important to prevent bogus message attacks from internal vehicles as well as protect vehicle privacy. In this paper, we propose a trust management scheme that ensures trust in VANETs while maintaining vehicle privacy. The trust scheme establishes trust between vehicles where a trust value is assigned to every vehicle based on its behavior and messages are accepted only from vehicles whose trust value is greater than a threshold, therefore, protecting VANETs from malicious vehicles and eliminating bogus messages. If a traffic event happens, vehicles upload event messages to the reachable roadside unit (RSU). Once the RSU has confirmed that the event happened, it announces the event to vehicles in its vicinity and records it into the blockchain. Using this mechanism, RSUs are prevented from sending fake or unverified event notifications. Simulations are carried out in the context of bogus message attacks to evaluate the trust scheme's reliability and efficiency. The results of the simulation indicate that the proposed scheme outperforms the compared schemes and is highly resistant to bogus message attacks.