• 제목/요약/키워드: Vehicle routing problem

검색결과 204건 처리시간 0.029초

VRPSPD 해결을 위한 위치기반의 실시간 재경로 탐색 휴리스틱 (A Location-based Real-time Re-routing Heuristic to Solve the VRPSPD)

  • 차상진;이기성;유영훈;조근식
    • Spatial Information Research
    • /
    • 제18권3호
    • /
    • pp.63-72
    • /
    • 2010
  • 일반적인 Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries (VRPSPD)는 배송과 수거가 동시에 발생하는 문제를 고려한 차량경로 문제이며, 차량의 운행 거리등의 비용을 최소화하는 것을 결정하는 문제이다. 그러나 기존의 VRPSPD는 이미 차량이 출발하기 전에 경로가 정해져 있어서 차량 운행 중 발생하는 고객의 수거 요청을 기존의 경로에 효율적으로 추가하여 서비스하기가 어렵다. 따라서 본 논문에서는 이러한 문제를 위치기반의 서비스를 이용하여 이동 중인 차량의 위치정보를 파악하고 이를 바탕으로 실시간 재경로 탐색을 통해 해결하는 휴리스틱을 제안한다. 그리고 실험을 통해 기존의 방식과 비교하여 차량을 운행하는데 소요되는 비용을 줄이는 결과를 보였다.

클러스터링을 이용한 주기적 차량운행경로 문제 해법 (A Clustering Based Approach for Periodic Vehicle Routing Problems)

  • 김병인;김성배
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.52-58
    • /
    • 2005
  • In this paper, we address a real-world periodic vehicle routing problem with time windows (PVRPTW). In addition to the general requirements of single-day vehicle routing problem, each stop has required number of visits within a cycle period in PVRPTW. Thus, we need to determine optimized days of visit for each stop with consideration of the cycle-period days together. The problem also requires consistent vehicle assignment to the stops. We developed a clustering based 3-phase approach for this problem: 1) stop-route assignment, 2) stop-day assignment, and 3) stop sequencing within a single-day route. Using the approach, we could reduce the number of routes and improve the routing efficiency for several real-world problems.

  • PDF

Model and Heuristics for the Heterogeneous Fixed Fleet Vehicle Routing Problem with Pick-Up and Delivery

  • Zhai, Shuai;Mao, Chao
    • 유통과학연구
    • /
    • 제10권12호
    • /
    • pp.19-24
    • /
    • 2012
  • Purpose - This paper discusses the heterogeneous fixed fleet vehicle routing problem with pick-up and delivery (HFFVRPPD), for vehicles with different capacities, fixed costs, and travel costs. Research Design, data, methodology - This paper made nine assumptions for establishing a mathematical model to describe HFFVRPPD. It established a practical mathematical model, and because of the non-deterministic polynomial-time hard (NP-hard), improved the traditional simulated annealing algorithm and tested a new algorithm using a certain scale model. Result - We calculated the minimum cost of the heterogeneous fixed fleet vehicle routing problem (HFFVRP) with a single task and, on comparing the results with the actual HFFVRP for the single task alone, observed that the total cost of HFFVRPPD reduced significantly by 46.7%. The results showed that the new algorithm provides better solutions and stability. Conclusions - This paper, by comparing the HFFVRP and HFFVRPPD results, highlights certain advantages of using HFFVRPPD in physical distribution enterprises, such as saving distribution vehicles, reducing logistics cost, and raising economic benefits.

  • PDF

강화학습 기반의 차량 경로 문제 일반화 방안 연구 (A Study of Solving the Generalized Vehicle Routing Problem Using Reinforcement Learning)

  • 정철환;김광수;김한솔
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.705-707
    • /
    • 2022
  • 본 연구에서는 기존 차량 경로 문제(Vehicle Routing Problem)의 범위를 확장시켜 일반화된 차량 경로문제(Generalized Vehicle Routing Problem)를 제시하고, 이 문제를 해결하기 위한 강화학습 모델을 제안한다. 기존의 차량 경로 문제는 depot에서 각 node(또는 각 node에서 depot)의 단방향만 존재해 제한된 문제만을 해결할 수 있었다. 이 한계점을 극복하기 위해 depot을 제외한 모든 node가 서로 연결된 형태의 일반화된 차량 경로 문제를 정의하고 이를 해결하고자 한다. 차량 경로 문제는 NP-hard 문제로 최근에는 강화학습을 이용해 이를 해결하고자 하는 모델이 연구되고 있다. 본 연구에서는 새로 정의한 일반화된 차량 경로 문제를 해결하기 위한 강화학습 모델을 제안한다.

  • PDF

유전자 알고리즘을 이용한 시간제약 차량경로문제 (Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm)

  • 전건욱;이윤희
    • 산업경영시스템학회지
    • /
    • 제29권4호
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.

Hybrid-PSO 해법을 이용한 수요지 제한이 있는 다용량 차량경로문제 (Heterogeneous Fleet Vehicle Routing Problem with Customer Restriction using Hybrid Particle Swarm Optimization)

  • 이상헌;황선호
    • 대한산업공학회지
    • /
    • 제35권2호
    • /
    • pp.150-159
    • /
    • 2009
  • The heterogeneous fleet vehicle routing problem(HVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles with various capacities, fixed costs and variable costs. We propose a new conceptual HVRPCR(HVRP with customer restriction) model including additional customer restrictions in HVRP. In this paper, we develop hybrid particle swarm optimization(HPSO) algorithm with 2-opt and node exchange technique for HVRP. The solution representation is a n-dimensional particle for HVRP with N customers. The decoding method for this representation starts with the transformation of particle into a priority list of customer to enter route and limit of vehicle to serve each customer. The vehicle routes are then constructed based on the customer priority list and limit of vehicle to serve. The proposed algorithm is tested using 8 benchmark problems and it consistently produces high-quality solutions, including new best solutions. The numerical results show that the proposed algorithm is robust and efficient.

GIS Oriented Platform For Solving Real World Logistic Vehicle Routing Problem

  • Md. Shahid Uz Zaman;Chen, Yen-Wei;Hayao Miyagi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1248-1251
    • /
    • 2002
  • Logistics optimization problems related with vehicle routing such as warehouse locating, track scheduling, customer order delivery, wastage pickup etc. are very interesting and important issues to date. Many Vehicle Routing and Scheduling Systems (VRSS) have been developed/proposed to optimize the logistics problems. But majority of them are dedicated to a particular problem and are unable to handle the real world spatial data directly. The system developed for one problem may not be suitable for others due to inter-problem constraint variations. The constraints may include geographical, environmental and road traffic nature of the working region along with other constraints related with the problem. So the developer always needs to modify the original routing algorithm in order to fulfill the purpose. In our study, we propose a general-purpose platform by combining GIS road map and Database Management System (DBMS), so that VRSS can interact with real world spatial data directly to solve different kinds of vehicle routing problems. Using the features of our developed system, the developer can frequently modify the existing algorithm or create a new one to serve the purpose.

  • PDF

수배송 서비스를 위한 운송계획 최적화 시스템 개발 (Development of a Planning System for the Routing and Scheduling of Vehicles in Pickup and Delivery Services)

  • 최지영;이태한;임재민
    • 산업공학
    • /
    • 제19권3호
    • /
    • pp.202-213
    • /
    • 2006
  • In this paper, we develop a planning system for the routing and scheduling of vehicles in pickup and delivery service such as door-to-door parcel service. Efficient routing and scheduling of vehicles is very important in pickup and delivery service. The routing and scheduling problem is a variation of vehicle routing problem which has various realistic constraints. We develop a heuristic algorithm based on tabu search to solve the routing and scheduling problem. We develop a routing and scheduling system installed the algorithm as a planning engine. The system manage the basic data and uses GIS data to make a realistic route plan.

전기차량경로문제의 충전소 위치선정문제의 해법 (Solving the Location Problem of Charging Station with Electric Vehicle Routing Problem)

  • 김기태
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.217-224
    • /
    • 2022
  • Due to the issue of the sustainability in transportation area, the number of electric vehicles has significantly increased. Most automakers have decided or planned to manufacture the electric vehicles rather than carbon fueled vehicles. However, there are still some problems to figure out for the electric vehicles such as long charging time, driving ranges, supply of charging stations. Since the speed of growing the number of electric vehicles is faster than that of the number of charging stations, there are lack of supplies of charging stations for electric vehicles and imbalances of the location of the charging stations. Thus, the location problem of charging stations is one of important issues for the electric vehicles. Studies have conducted to find the optimal locations for the charging stations. Most studies have formulated the problem with deterministic or hierarchical models. In this paper, we have investigated the fluctuations of locations and the capacity of charging stations. We proposed a mathematical model for the location problem of charging stations with the vehicle routing problem. Numerical examples provide the strategy for the location routing problems of the electric vehicles.

A 3-D Genetic Algorithm for Finding the Number of Vehicles in VRPTW

  • Paik, Si-Hyun;Ko, Young-Min;Kim, Nae-Heon
    • 산업경영시스템학회지
    • /
    • 제22권53호
    • /
    • pp.37-44
    • /
    • 1999
  • The problem to be studied here is the minimization of the total travel distance and the number of vehicles used for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented. The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested ‘Cubic-GA (or 3-D GA)’ in this paper means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable number of vehicles.

  • PDF