• Title/Summary/Keyword: Vehicle pulse

Search Result 147, Processing Time 0.036 seconds

Compare Characteristics of Neck Injuries between Rear Impact Pulse and NCAP Pulse (후방 충돌 펄스와 NCAP 펄스 차이로 인한 목상해 특성 비교)

  • Kim, Jong Kon;Park, Jong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.7-12
    • /
    • 2017
  • The whiplash is the most important issue of low speed rear-impact. So auto makers are committed to developing a seat to improve whiplash injury. Most NCAP tests have been used by same pulse (Mid Velocity 16kph). Only Euro NCAP uses different pulse that consists of Low, Mid, High velocity. But Euro NCAP also uses same pulse in Mid velocity as other NCAP test. That Mid velocity NCAP pulse was made by rear impact that has 90's vehicle structure properties. That pulse was used until now days. However these days, auto maker use more high tensile steel than 90's as customer and society demand more fuel efficiency and light vehicle with good safety structure. So modern vehicles have different pulse patterns of rear impact than NCAP pulse and 90's vehicle crash properties. In this paper, the test was conducted by following condition. Target car was impacted by the rigid barrier with certain velocity. Finally target vehicle gained delta V 16kph which was same velocity as NCAP Mid Velocity pulse. It is critical velocity which occur long period neck injury. It is very different pulse that was gained by real car impact from NCAP pulse. And it has higher peak G with high fluctuation and short duration than NCAP pulse.

Real-time Pulse Radar Signal Processing Algorithm for Vehicle Detection (실시간 차량 검지를 위한 펄스 레이더 신호처리 알고리즘)

  • Ryu Suk-Kyung;Woo Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.353-357
    • /
    • 2006
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We propose the pulse radar signal processing algorithm in which we devide the trace. data from pulse radar into segments by using SSC concept, and then construct the sectors in accordance with period and amplitude of segments, and finally decide the vehicle detection probability by applying the SSC parameters of each sectors into the discriminant function. We also improve the signal processing time by reducing the quantities of processing data and processing routines.

A Study on the Drowsy Driving Prevention System using the Pulse Sensor (맥박센서를 이용한 졸음방지운전시스템에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.577-578
    • /
    • 2016
  • This paper presents a method of vehicle safety system using a pulse sensor which will be able to occurs drowsy driving accident when people driving. The proposed vehicle safety system alarms according to the driver drowsy condition, therefore the driver prevent the direct and $2^{nd}$ accident beforehand cognitive unexpected and dangerous accident using vehicle safety system.

  • PDF

An Analysis of Vehicle Handling Characteristics with ADAMS (ADAMS를 이용한 차량 조종안정성 해석)

  • 조병관;송성재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.109-118
    • /
    • 1996
  • An analysis of handling characteristics of a vehicle is performed for step and pulse steering input, which may be very useful in suspension design stage. Many developed computer programs for vehicle dynamics require test data of compliance effects for proto type car. Therefore, these programs are not suitable for automobile development stage. Using the raw design data of suspension and steering system, we analyze the vehicle behavior for step and pulse steering input with commercial multibody dynamics program, ADAMS. Simulated results are in good agreement with vehicle test results. Vehicle handling characteristics parameters which are very useful in automobile suspension design are evaluated from the analysis.

  • PDF

Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries (리튬이차전지 출력측정법의 원리 및 측정법간 비교 연구)

  • Lee, Hye-Won;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • As the market of lithium secondary batteries moves from mobile IT devices to large-format electric vehicles or energy storage systems, the strengthened battery specifications such as long-term reliability longer than 10 years, pack-level safety and tough competitive price have been required. Moreover, even though high power properties should also be achieved for hybrid electric vehicles, it is not easy to measure accurate power values at various conditions. Because it is difficult to choose a proper measurement method and its experimental condition is more complex comparing to capacity measurement. In addition, the power values are very sensitive to power duration time, state-of-charge (SOC) of cells, cut-off voltages, and temperatures, whereas capacity values are not. In this paper, we introduce three kinds of power measurement methods, hybrid pulse power characterization (HPPC) suggested by US FreedomCar, so-called J-pulse by Japan electric vehicle association standards (JEVS) and constant power measurement, respectively. Moreover, with pouch-type unit cells for HEV, experimental power data are discussed in order to compare each power measurement.

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

Effects of Chassis Frame Stiffness on Vehicle Handling Characteristics (프레임 장성이 차량의 조종안정서에 미치는 영향)

  • 이병림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-105
    • /
    • 2002
  • In order to investigate how the chassis frame stiffness including body structure affects vehicle handling characteristics, in this paper, objective test evaluations such as steady state circle maneuvering test and pulse input transient test are performed. The basic steer characteristics can be obtained from stability factor and 4 parameter method is used to evaluate vehicle handling characteristics between original vehicle and the other with reinforced chassis. The result shows that vehicle with reinforced chassis has advantages in handling characteristics.

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

Study on the FEA Model of the Linear Pulse Motor for Railway Application and Reduction of Thrust Ripple (철도차량 추진용 Linear Pulse Motor의 축소 모델 해석 및 추력 리플 저감 연구)

  • Seol, Hyun-Soo;Lee, Gang-Seok;Jeong, Geochul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.981-987
    • /
    • 2017
  • In this paper, we describe the LPM structure with a two-phase, which is not used previously, and explain its operation principle. In order to predict the accurate performance of LPM reduction model, finite element model was derived and the back EMF of LPM reduction model was measured and compared. In order to investigate the thrust and normal force of the LPM reduction model, a driving circuit capable of applying two-phase pulse currents was constructed and the performance was predicted in conjunction with the finite element analysis model. Finally, the design considering actual LPM size was performed. Since the size of the reduction model is small, the field could be made of a permanent magnet. However, it is almost impossible to manufacture a permanent magnet to match the size and capacity of a real LPM for a vehicle, in terms of cost and writing. Therefore, the actual vehicle LPM was replaced by wound type that generates a magnetic field by applying current to the field winding, and the final model was derived using the reaction surface method.

Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters (전기차용 전력변환장치의 펄스 폭 변조 기법 분석)

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan;Yang, Seung-Yong;Boo, Chang-Jin;Kim, Ho-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.