• Title/Summary/Keyword: Vehicle power

Search Result 2,475, Processing Time 0.033 seconds

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

A Study on an Electric Power System Design of a Small Electric Vehicle (소형 전기자동차의 전기동력시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • The electric power system design of the electric vehicle are required to improve the performance. The electric power system on the electric vehicle are consist of a battery, a pedal sensor, an electric motor and a controller. In this paper, Automotive manufacture's various electric vehicle models are investigated and analyzed. The mathematical models for the electric power system are studied, and then important variables are considered. Simulation and experimental test results show the model of the electric power system on the electric vehicle and design parameter decision are effective to the electric vehicle design.

A study on a Development of Electric Equivalent Circuit Models of Vehicle Electric Power System (자동차 전력 시스템의 전기적 등가회로 모델 개발에 관한 연구)

  • Choi, Dae-Ho;Lee, Jae-In;SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.669-671
    • /
    • 2000
  • Vehicle electric power system, which consists of two major components; an alternator and a battery, supplies electric power to vehicle electric and electronic systems. In recent years, bigger power supply is required for the rapid demand of the number of vehicle electric and electronic systems. It is important that vehicle power system should be analyzed exactly. For the simulation of vehicle electric power system, appropriate component model of vehicle electric power system should be chosen. In this paper, a simplified and accurate battery model is developed to obtain the battery parameters, and a Variable Alternator Terminal Voltage Model is introduced to described an alternator. The case study shows that simulation results using the suggested models are well agreed with the experiments.

  • PDF

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Wireless Power Transfer Technology in On-Line Electric Vehicle

  • Ahn, Seung-Young;Chun, Yang-Bae;Cho, Dong-Ho;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The On-line Electric Vehicle (OLEV) is an electric transport system in which the vehicle's power is transferred wirelessly from power lines underneath the surface of the road. Advantages of the OLEV include reducing battery size and cost to about 20 percent of that of conventional battery-powered electric vehicles, thereby minimizing the vehicle's weight and price, as well as the cost of charging the system. In this paper, we introduce a wireless power transfer mechanism to maximize the electrical performance of the power transfer system. Power transfer capacity, power transfer efficiency, and magnitude of leakage in the electromagnetic field (EMF) are analyzed, and the optimization methodology of the design parameters is discussed.

Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle (전기자동차 및 내연기관 자동차의 최대 주행 거리 비교 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • In this paper, EV (Electric Vehicle) and ICE (Internal Combustion Engine) vehicle simulators are developed to compare maximum driving range of EV and ICE vehicle according to different driving patterns. And, simulations are performed for fourteen constant velocity cases (20, 30, 40, ${\ldots}$, 150 km/h) and four different driving cycles. From the simulation results of constant velocity, it is found that the decreasing rate of maximum driving range for EV is larger than the one for ICE as both the vehicle velocity and the driving power increase. It is because the battery efficiency of EV decreases as both the velocity and the driving power increase, whereas the engine and transmission efficiencies of ICE vehicle increase. From the results of four driving cycle simulation, the maximum driving range of EV is shown to decrease by 50% if the average driving power of driving cycle increases from 10 to 20kW. It is because the battery efficiency decreases as the driving power increases. In contrast, the maximum driving range of ICE vehicle also increases as the average driving power of driving cycle increases. It is because the engine and transmission efficiencies also increase as the driving power increases.

Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System (대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발)

  • Yoo, Chunsik;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

Influence Evaluation of Electric Vehicle Load on Distribution Systems by the penetration rate of Electric Vehicle (전기자동차 보급 전망에 따른 배전계통에서의 영향 평가)

  • Kim, Chul-Woo;Han, Seung-Ho;Song, Taek-Ho;Jeong, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.256-257
    • /
    • 2011
  • The development for Eco-friendly cars has been expanded as the concern about environmental pollution and a rise in gas prices. The Electric Vehicle(EV) and Plug in Hybrid Electric Vehicle(PHEV) are generally connected on distribution power systems to charge the traction batteries. The growing number of EV/PHEVs could have a effect on distribution power systems and result in overload of power utilities and power quality problems. In order to reduce the adverse effect on distribution power systems, the influence of electric vehicle loads should be evaluated. In this paper, the influence of electric vehicle loads is evaluated by using OpenDSS(Open Source Distribution System Simulator) according to the penetration rate of electric vehicle.

  • PDF

A Study on Maximum Power Measurement Method for NOVC-type Hybrid Electric Vehicle (NOVC형식 하이브리드 자동차의 최고 출력측정방법 연구)

  • Kim, Joowon;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.36-42
    • /
    • 2018
  • UNECE/WP29/GRPE/EVE has recently defined that the power of a hybrid electric vehicle is the system power. Although a method for measuring the maximum power of a hybrid electric vehicle is presented by KATRI, it does not consider charging and discharging characteristics of traction batteries. This study provides a maximum power measurement method which reflects the charging and discharging characteristics of traction batteries in NOVC-HEVs (Not Off Vehicle Charging-Hybrid Electric Vehicles). Both methods are compared with regard to the output measurement results.