• Title/Summary/Keyword: Vehicle number recognition

Search Result 107, Processing Time 0.029 seconds

Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks (딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

A Study on Vehicle License Plates and Character Sorting Algorithms in YOLOv5 (YOLOv5에서 자동차 번호판 및 문자 정렬 알고리즘에 관한 연구)

  • Jang, Mun-Seok;Ha, Sang-Hyun;Jeong, Seok-Chan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.555-562
    • /
    • 2021
  • In this paper, we propose a sorting method for extracting accurate license plate information, which is currently used in Korea, after detecting objects using YOLO. We propose sorting methods for the five types of vehicle license plates managed by the Ministry of Land, Infrastructure and Transport by classifying the plates with the number of lines, Korean characters, and numbers. The results of experiments with 5 license plates show that the proposed algorithm identifies all license plate types and information by focusing on the object with high reliability score in the result label file presented by YOLO and deleting unnecessary object information. The proposed method will be applicable to all systems that recognize license plates.

Multi-lane Road Recognition Model Applying Computer Vision (컴퓨터비전을 적용한 다차선 도로 인식 모델)

  • Kim, Do-Young;Jang, Jong-Wook;Jang, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.317-319
    • /
    • 2021
  • In Korea, an intelligent transportation system(ITS) is established to efficiently operate traffic congestion on roads and is being used for traffic information collection and speed control systems. Currently, designated and dedicated lanes are in place to ensure traffic circulation and traffic safety, and systematic and accurate illegal vehicle crackdown systems with artificial intelligence technology are needed. In this study, we propose a vehicle number recognition model that can improve the efficiency of the traffic of designated vehicles. By applying computer vision technology, we are going to identify three-lane and four-lane multi-lane roads in real time and detect vehicle numbers by car to suggest ways to crack down on vehicles that violate the designated lane system.

  • PDF

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Regional Traffic Information Acquisition by Non-intrusive Automatic Vehicle Identification (비매설식 자동차량인식장치를 이용한 구간교통정보 산출 방법 연구)

  • Kang Jin-Kee;Son Youngtae;Yoon Yeo-Hwan;Byun Sangchul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • This paper describes about non-burial AVI (Automatic Vehicle Identification) system using general vehicle as probe car for obtaining more accurate traffic information while conserving road pavement surface. Existing spot traffic detectors have their own limits of not obtaining right information owing to its mathematical method. Burial AVI systems have some defects, causing traffic jam, needing much maintenance cost because of frequent cutting of loop and piezo-electric sensors. Especially, they have hard time to make right detection, when it comes to jamming time. Therefore, in this paper, we propose non-burial AVI system with laser trigger unit. Proposed non-burial AVI system is developed to obtain regional traffic information from normal Passing vehicle by automatic license number recognition technology. We have adapted it to national highway section between Suwon city and Pyong$\~$Taek city(9.5km) and get affirmative results. Vehicle detection rate of laser trigger unit is more than 95$\%$, vehicle recognition rate is 87.8$\%$ and vehicle matching rate is about 14.3$\%$. So we regard these as satisfying results to use the system for traffic information service. We evaluate proposed AVI system by regulation of some institutions which are using similar AVI system and the proposed system satisfies all conditions. For future study, we have plan of detailed research about proper lane number from all of the target lanes, optimal section length, information service period, and data fusion method for existing spot detector.

  • PDF

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

Deep Learning Image Processing Technology for Vehicle Occupancy Detection (차량탑승인원 탐지를 위한 딥러닝 영상처리 기술 연구)

  • Jang, SungJin;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1026-1031
    • /
    • 2021
  • With the development of global automotive technology and the expansion of market size, demand for vehicles is increasing, which is leading to a decrease in the number of passengers on the road and an increase in the number of vehicles on the road. This causes traffic jams, and in order to solve these problems, the number of illegal vehicles continues to increase. Various technologies are being studied to crack down on these illegal activities. Previously developed systems use trigger equipment to recognize vehicles and photograph vehicles using infrared cameras to detect the number of passengers on board. In this paper, we propose a vehicle occupant detection system with deep learning model techniques without exploiting existing system-applied trigger equipment. The proposed technique proposes a system to detect vehicles by establishing triggers within images and to apply deep learning object recognition models to detect real-time boarding personnel.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.