• 제목/요약/키워드: Vehicle navigation system

검색결과 712건 처리시간 0.021초

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템 (MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment)

  • 김성철;홍진석;송진우
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

측정치 시간지연을 보상한 고속, 고기동 항체용 전자광학 추적장비 항법 알고리즘 (Navigation Algorithm for Electro-Optical Tracking System of High Speed and High Maneuvering Vehicle with Compensation of Measurement Time-Delay)

  • 손재훈;최우진;오상헌;이상정;황동환
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1632-1640
    • /
    • 2021
  • In order to improve target tracking performance of the conventional electro-optical tracking system (EOTS) in the high speed and high maneuvering vehicle, an EOTS navigation algorithm is proposed, in which an inertial measurement unit(IMU) is included and navigation results of the vehicle are used. The proposed algorithm integrates vehicle's navigation results and the IMU and the time-delay and the scale factor errors are augmented into the integrated Kalman filter. In order to evaluate the proposed navigation algorithm, a land vehicle navigation experiments were performed a navigation grade navigation system, TALIN4000 and a tactical grade IMU, LN-200 and a equipment for roll motion were loaded on the land vehicle. The performance evaluation results show that the proposed algorithm effecting works in high maneuvering environment and for the time-delay.

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권3호
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

A Study on the Longitudinal and Lateral Errors of Air Vehicle Heading for Auto-landing

  • Park, Ji Hee;Park, Hong Sick;Shin, Chul Su;Jo, Young-Wo;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권2호
    • /
    • pp.115-121
    • /
    • 2013
  • For the auto-landing operation of an air vehicle, the possibility of auto-landing operation should be first evaluated by testing the navigation performance through a flight test. In general, navigation performance is tested by analyzing north/east/down (NED) errors relative to reference equipment whose precision is about 8~10 times higher than that of a navigation system. However, to evaluate the auto-landing operation of an air vehicle, whether the air vehicle approaches a glide path aligned with the runway, within a specific error, needs to be examined rather than examining the north/east errors of the navigation system. Therefore, the longitudinal/lateral errors of air vehicle heading need to be analyzed. In this study, a method for analyzing the longitudinal/lateral errors of a navigation system was proposed as the navigation performance test method for evaluating the safety during the auto-landing of an air vehicle. Also, flight tests were performed six times, and the safety of auto-landing was examined by analyzing the performance using the proposed method.

초음파 위치인식 시스템과 INS 결합을 통한 차량의 자율 주행 (Autonomous Navigation of the Vehicle Via Ultrasonic Positioning System and INS Integration)

  • 신택영
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.359-370
    • /
    • 2023
  • For a vehicle to follow a reference path accurately, its position must be estimated accurately and reliably. In this paper, we propose a lateral control algorithm for autonomous navigation of a vehicle via USAT(Ultrasonic Satellite System), which is an absolute position measurement system using an ultrasonic wave and INS(Inertial Navigation System) integration. In order to estimate the vehicle's parameters, a J-turn test is used. And the autonomous navigation performances of proposed lateral control algorithm and validity of proposed lateral control algorithm are verified and evaluated by simulation and experiments.

Ackermann Geometry-based Analysis of NHC Satisfaction of INS for Vehicular Navigation according to IMU Location

  • Cho, Seong Yun;Chae, Myeong Seok
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권1호
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, we analyze the Non-Holonomic Constraint (NHC) satisfaction of Inertial Navigation System (INS) for vehicular navigation according to Inertial Measurement Unit (IMU) location. In INS-based vehicle navigation, NHC information is widely used to improve INS performance. That is, the error of the INS can be compensated under the condition that the velocity in the body coordinate system of the vehicle occurs only in the forward direction. In this case, the condition that the vehicle's wheels do not slip and the vehicle rotates with the center of the IMU must be satisfied. However, the rotation of the vehicle is rotated by the steering wheel which is controlled based on the Ackermann geometry, where the center of rotation of the vehicle exists outside the vehicle. Due to this, a phenomenon occurs that the NHC is not satisfied depending on the mounting position of the IMU. In this paper, we analyze this problem based on Ackermann geometry and prove the analysis result based on simulation.

다중센서 융합을 통한 전투차량의 위치추정 성능 개선에 관한 연구 (A Study on the Performance Improvement of Position Estimation using the Multi-Sensor Fusion in a Combat Vehicle)

  • 남윤욱;김성호;김기태;김형남
    • 품질경영학회지
    • /
    • 제49권1호
    • /
    • pp.1-15
    • /
    • 2021
  • Purpose: The purpose of this study was to propose a sensor fusion algorithm that integrates vehicle motion sensor(VMS) into the hybrid navigation system. Methods: How to evaluate the navigation performance was comparison test with the hybrid navigation system and the sensor fusion method. Results: The results of this study are as follows. It was found that the effects of the sensor fusion method and α value estimation were significant. Applying these greatly improves the navigation performance. Conclusion: For improving the reliability of navigation system, the sensor fusion method shows that the proposed method improves the navigation performance in a combat vehicle.

반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험 (Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.