• Title/Summary/Keyword: Vehicle motion

Search Result 1,112, Processing Time 0.032 seconds

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

A study on the Development of a Driving Simulator for Reappearance of Vehicle Motion (I) (차량 주행 감각 재현을 위한 운전 시뮬레이터 개발에 관한 연구 (I))

  • Park, Min-Kyu;Lee, Min-Cheol;Son, Kwon;Yoo, Wan-Suk;Han, Myung-Chul;Lee, Jang-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.90-99
    • /
    • 1999
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. The driving simulator is used effectively for studying interaction of a driver-vehicle and developing vehicle system of a new concept. The driving simulator consists of a vehicle motion bed system, motion controller, visual and audio system, vehicle dynamic analysis system, cockpit system, and etc. In it is paper, the main procedures to develop the driving simulator are classified by five parts. First, a motion bed system and a motion controller, which can track a reference trajectory, are developed. Secondly, a performance evaluation of the motion bed system for the driving simulator is carried out using LVDTs and accelerometers. Thirdly, a washout algorithm to realize a motion of an actual vehicle in the driving simulator is developed. The algorithm changes the motion space of a vehicle into the workspace of the driving simulator. Fourthly, a visual and audio system for feeling higher realization is developed. Finally, an integration system to communicate and monitor between sub systems is developed.

  • PDF

The User Motion Pattern Control System for The Simulated Vehicle

  • Kim, Tae-Wan;Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2012
  • The purpose of this paper is to design and implement the user motion pattern control system for the simulated vehicle. After analyzing the user motion patterns in the system, the patterns are used to control the moving direction of the simulated vehicle such as forward, backward, turn right, turn left etc. The patterns in the system around are sent to the simulated vehicle in real time. In order to execute the suggested user motion pattern control system, the Kinect is used for executing the system. The Kinect recognizes the specified user motion patterns and it transmits the data to the user motion pattern control system. There are nine kinds of the user motion patterns in the system for controlling the simulated vehicle. In addition to this, some sensors are used to detect the condition of the simulated vehicle. GPS is also used to estimate the current location of the simulated vehicle and to obtain the driving information.

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

UAV(Unmanned Aerial Vehicle) image stabilization algorithm based on estimating averaged vehicle motion (기체의 평균 움직임 추정에 기반한 무인항공기 영상 안정화 알고리즘)

  • Lee, Hong-Suk;Ko, Yun-Ho;Kim, Byoung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.216-218
    • /
    • 2009
  • This paper proposes an image processing algorithm to stabilize shaken scenes of UAV(Unmanned Aerial Vehicle) caused by vehicle self-vibration and aerodynamic disturbance. The proposed method stabilizes images by compensating estimated shake motion which is evaluated from global motion. The global motion between two continuous images modeled by 6 parameter warping model is estimated by non-linear square method based on Gauss-Newton algorithm with excluding outlier region. The shake motion is evaluated by subtracting the global motion from aerial vehicle motion obtained by averaging global motion. Experimental results show that the proposed method stabilize shaken scenes effectively.

  • PDF

Rollover Propensity Analysis of A Jeep Vehicle (지프차량의 전복성향 해석)

  • 백운경
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.85-92
    • /
    • 1999
  • Vehicle rollover is an important issue for the traffic safety. Rollover can occur from the driver's action, the vehicle characteristics, or the road condition. This study is about the rollover propensity analysis of a jeep vehicle using the steering and braking maneuver, which is the combined result by the driver and the vehicle. Simple equations of roll motion is used to analyze the roll motion and a special purpose vehicle dynamics program is used to simulate the rollover of the jeep vehicle. From the simulation, an incipient rollover motion of the vehicle was found. However, the more complete rollover propensity analysis would require further investigation using roll dynamic sensitivity study.

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

A Pilot Study on the Muscle Activities in Step Input Test as an Indicator of the Vehicle Characteristics

  • Kong, Yong-Ku;Jung, Myung-Chul;Lee, In-Seok;Hyun, Young-Jin;Kim, Chang-Su;Seo, Min-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.217-227
    • /
    • 2013
  • Objective: The purpose of this study was to analyze 'response time', 'peak response time' and 'overshoot value' for each muscle by applying the EMG signal to the vehicle response in ISO 7401 and to quantify the response of the driver according to vehicle characteristics by comparing vehicle characteristics and muscle responses of the driver. Background: The Open-loop test defined in international standards ISO 7401 is the only method for evaluating the performance of the vehicle. However, this test was focused only on mechanical responses, not driver's ones. Method: One skilled male driver(22 yrs. experience) was participated in this experiment to measure muscle activities of the driver in transient state. Then the seven muscle signals were applied to calculate 'response time', 'peak response time', and 'overshoot value'. Results: In the analyses of the EMG data, the effects of vehicle type and muscle were statistically significant on the 'response time' and 'peak response time'. Also, the effects of vehicle type, muscle, and lateral acceleration level were statistically significant on the 'overshoot value' in this study. According to the analyses of the vehicle motion data, vehicle motion variable(LatAcc, Roll, YawVel) was statistically significant on the 'response time' and vehicle type, vehicle motion variable, and lateral acceleration level were statistically significant on the 'peak response time', respectively. Conclusion: In the analyses of the 'response time' and 'overshoot value', the data of muscle activities(EMGs) was better index that could evaluate the vehicle characteristic and performance than the data of vehicle motion. In case of peak response time, both EMG and vehicle motion data were good index. Application: The EMGs data from a driver might be applicable as index for evaluation of various vehicle performances based on this study.

A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform (차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구)

  • Song, Moon-Hyung;Shin, Dong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.