• Title/Summary/Keyword: Vehicle loads

Search Result 482, Processing Time 0.03 seconds

Estimation of Dynamic Load Amplification Factors under Various Roughness Indices and Vehicle Classes (주행차량의 종류와 아스팔트 콘크리트 포장 평탄성에 따른 동적하중 증가계수 산정)

  • Choi, Jun-Seong;Seo, Joo-Won;Kim, Jong-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, frequently passing vehicles with two, three, four, and five axles were chosen through traffic volume analysis in Kyung-In Expressway in order to analyze how the road roughness and vehicle speed affect on the dynamic loads for roads in various vehicle classes. Dynamic loads according to chosen vehicles are estimated by TruckSim program. Dynamic load amplification factor is ratio between dynamic and static loads, and it is also determined for each vehicle classes. From the result of dynamic loads estimated by the dynamic load amplification factor, it is shown that for three-axles vehicle, when IRI is 3.5 and vehicle speed is 100km/hr, asphalt pavements receive additional 36% of static loads in maximum. The analysis of the amplification factor according to each vehicle classes also indicates that the amplification factor increases as the distance between the axles becomes smaller and each axle receives more loads.

Modeling of an AGT Vehicle for Dynamic Response Analysis (경량전철의 동적응답 특성 평가를 위한 모델링)

  • 김기봉;김철우;송재필;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.218-225
    • /
    • 2000
  • Recently, right rail transit (L.R.T.) systems become influential as a new traffic system in urban area to solve heavy traffic problems. However, there are little research results about the dynamic interaction problems between the vehicle and structural system, even though some studies far those static problems have been carried out. Therefore, first of ail, the dynamic equations of an interaction between vehicle system and surface roughness of the vehicle path are derived before developing the dynamic equations of vehicle-structure-surface roughness system, in this study. As a vehicle model, an automated guide-way transit (A.G.T.) system is adopted. Parametric study shows that the dynamic wheel loads of the vehicle system has a tendency to increase with vehicle speeds and stiffness of suspension system. However, those dynamic wheel loads have tendencies to decrease in according to loads of the vehicle system.

  • PDF

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Aerodynamic Problems of Launch Vehicles

  • Chou, Kyong-Chol
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.5-21
    • /
    • 1984
  • The airflow along the surface of a launch vehicle together with base flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  • PDF

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.

Effect of Longitudinal Steel Ratio on Behavior of CRCP System (연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

Equivalent Vehicle Load Factors for Girder and Beam of Parking Garage Structure (주차장 구조물의 보와 거더의 등가차량 하중계수에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.203-216
    • /
    • 1997
  • The Equivalent vehicle load factors of Beams and Girders on parking garage structure are proposed in this study. Without taking the sophisticated numerical analysis for the concentrated wheel loads, the design member forces of beam and girder can be easily calculated only with those for the distributed load by using the constructed relationships between the equivalent vehicle load factor and the length of member. Besides, the standard vehicle with total weight of 2.4ton is designed based on the review of many foreign design codes for parking garage and the investigation of small to medium vehicles made in Korea. Finally the efficiency and the reliability of the proposed equivalent vehicle load factors are demonstrated through the application of the typical beam and girder.

  • PDF

Variation of Moving Dynamic Vehicle Loads According to Surface Smoothness of Pavement Systems (도로포장 표면평탄성에 따른 주행차량의 동적 하중 변화 특성)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-144
    • /
    • 2008
  • The dynamic loads imposed by moving vehicles have variations in the magnitude due to the surface roughness of the pavement systems and the larger dynamic loads than the design loads may affect the pavement performance. This paper presents variations of the moving dynamic vehicle loads due to the pavement surface roughness. This study was performed as a basic study to apply the pay factor to the surface roughness for the improvement of pavement quality and performance. The profile data was obtained from the old and new pavements and the analysis was performed to investigate the dynamic loads when vehicles move on the pavements having those profiles. The artificial profiles were also developed to find the effects of the vehicle speed, wavelength and amplitude of the surface roughness on the dynamic vehicle loads. The increase in the load magnitude due to the surface roughness affects the stresses and strains of pavements and finally reduces the pavement life. The methodology to obtain the relationship between the surface roughness and the pavement performance was proposed in this study.

  • PDF