• 제목/요약/키워드: Vehicle information recognition

검색결과 373건 처리시간 0.029초

차량 규격과 특징 패턴을 이용한 자동차 번호판 추출 (Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.339-345
    • /
    • 2002
  • 자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.

차량 규격과 특징 패턴을 이용한 자동차번호판 추출 (Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition)

  • 이종석;남기환;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.596-599
    • /
    • 2001
  • 자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.

  • PDF

영상 판독 이벤트 신호로 제어되는 실시간 차량하부 검사 시스템 엔진 개발 (Development of Real-Time Under Vehicle Inspection System Engine by Image Identification Event)

  • 전지혜;양지희;장지웅;박구만
    • 한국위성정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.16-21
    • /
    • 2015
  • 본 논문은 두 가지 영상 이벤트 신호로 제어되는 실시간 차량하부 검사 엔진에 대해 제안한다. 첫 번째 영상 이벤트는 차량 번호판 인식에 의한 과정으로 생성된 것이고, 두 번째 영상 이벤트는 차량 하부 특정 이벤트 검출에 의해 생성된 것이다. 실험 결과, 두 영상 이벤트 모두 2.8초, 1.1초로 실시간 처리에 적합하게 발생되는 것을 확인할 수 있었고, 이러한 영상 이벤트가 시스템의 제어 체계로 사용되어 후부에 연결되는 다음 대응 상황에 적합한 신호를 보내주는 것으로 확인할 수 있었다.

고유 숫자를 이용한 번호판 숫자 인식 (Recognition of Numeric Characters in License Plates using Eigennumber)

  • 박경수;강현철;이완주
    • 대한전자공학회논문지SP
    • /
    • 제44권3호
    • /
    • pp.1-7
    • /
    • 2007
  • 자동차 번호판을 인식하기 위해서는 차량 영상에서 번호판을 추출하고, 추출된 번호판으로부터 문자를 분리하여야 하고, 각 문자들에 대해서 특징 벡터를 추출하고 신경망을 이용하여 인식한다. 이때 인식의 기준이 되는 특징 벡터의 선정은 데이터양의 감소뿐 만 아니라 인식 성능에 많은 영향을 미친다. 본 논문에서는 숫자를 고유 숫자(eigennumber)의 선형 조합으로 분해하여 특징 벡터를 추출하는 새로운 특징 벡터 추출 기법을 제안하고, 자동차 번호판의 숫자 인식에 적용함으로써 그 유효성을 검증하였다. 실험 결과, 고유 숫자 공간상에서 다층 퍼셉트론 신경망을 이용하여 95.3%의 인식률을 보였고, 이는 일반적인 메쉬 특징과 비교하여 약 5%의 향상된 결과이다.

신경망을 이용한 운행차량의 차종인식 연구 (A Study on the Model Recognition of Moving Vehicles Using a Neural Network)

  • 이효종
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.69-78
    • /
    • 2005
  • 산업화가 활발히 이루어지면서 자동차의 수요도 세계적으로 급증하고 있다. 교통제어나 차량에 연관된 범죄 등에서 자동차의 인식에 관한 연구의 중요성 때문에 이에 관련된 연구는 오래 전부터 수행되어왔다. 본 논문에서는 이동차량의 인식 효율성을 높이기 위하여 제조회사별 차종을 인식하는 혁신적인 방법을 제시한다. 차종의 인식은 질감을 이용하여 인식하였다. 차량의 전면부는 모델별로 다르다는데 착안하여 운행차량의 전면부 영역에서 질감을 추출하였다. 획득한 질감 특징을 차종별로 3중신 경망에 학습을 시킨 후 인식을 시도하였다. 제안 알고리즘에서 차종의 인식은 95$\%$로 양호하게 나타났다.

색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식 (Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network)

  • 이재수;김수인;서춘원
    • 전자공학회논문지T
    • /
    • 제35T권3호
    • /
    • pp.46-52
    • /
    • 1998
  • 본 논문에서는 차량에 부착된 번호 판을 컴퓨터에 입력한 후 이를 색 분해법과 역전파 신경망을 이용하여 자동차 번호를 고속으로 추출할 수 있는 방법을 제시하였다. 칼라 비디오 카메라에 의해 컴퓨터에 입력되는 자동차의 동화상을 R, G, B 신호로 분리한 후 승용차의 번호판 색상을 이용하여 R, G ,B의 각 농도에 맞는 임계치를 설정하여 2치화 시켜 번호판 영역을 추출한 후에 2 치화된 이 화상 신호를 프레임 버퍼에 기록하여 컴퓨터의 화상 데이터로 입력시켰다. 그리고 문자 인식 알고리즘을 적용한 후 문자 인식을 개선시키기 위해 역전파 신경 회로망을 적용하여 차랑 번호판 인식 시스템을 구현하였다. 또한 주변의 유사 색상의 존재로 인한 흔돈을 극소화시키기 위해 차량 번호판의 직사각형 구조를 이용하여 수평.수직선 추출 알고리즘을 사용하였으며 실험 결과 고속으로 차량 번호판 추출 및 인식이 가능함을 보였다.

  • PDF

저 조도 영상에서의 말레이시아 차량 번호판 인식 (Malaysian Vehicle License Plate Recognition in Low Illumination Images)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제13권10호
    • /
    • pp.19-26
    • /
    • 2013
  • 말레이시아 차량 번호판에는 플라스틱으로 제작된 영문 및 숫자들이 엠보싱 형태로 부착되어있으며 수평 수직방향 문자들 사이 간격이 조밀하게 배치된 경우가 많다. 따라서 조도가 낮은 차량 영상에서는 번호판 문자 획 정보 추출이 어려워질 수 있다. 본 논문에서는 저 조도에서 촬영된 말레이시아 차량 영상에서 번호판을 인식하는 알고리즘을 제안하였다. 저 조도에서 촬영된 차량 영상에서도 문자 획 연결 요소를 정확하게 추출하기 위해 DoG 필터링 기반 문자 획 생성 기법을 도입하였다. 문자 획 연결요소 해석을 통한 번호판 후보 영역을 추정한 다음 문자 영역을 분할하고 인식을 하였다. 쿠알라룸푸르 도로상에서 조명이 부착되지 않은 IR 카메라를 사용하여 주야로 촬영한 6,046장의 차량 영상을 대상으로 번호판 인식 실험을 수행하였다. 제안된 알고리즘을 이용하여 실험해 본 결과 번호판 인식 성능이 96.1%로 나타났다.

번호판 인식을 통한 자동 주차관리 시스템의 개선된 UI 설계 (Design of Improved UI of Automatic Parking Management System using License Plate Recognition)

  • 김봉기
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.1083-1088
    • /
    • 2014
  • 최근 영상 기술과 ICT 기술의 발전으로 인해 다양한 형태의 영상처리 서비스가 가능하게 되고, 이러한 기술을 활용하는 응용 서비스가 다양화 되고 있다. 자동차 번호판 인식은 주차관리 등 차량의 정보를 인지하는 곳에 사용되는데 기존의 시스템들은 주차권 발급이나 불필요한 장비 부착 등 경제적인 단점을 갖고 있다. 이러한 문제점을 개선하기 위하여 본 논문에서는 OpenCV를 근간으로 한 emguCV를 이용하여 차량의 고유번호인 자동차 번호판 인식을 통한 자동 주차관리 시스템을 설계 및 구현하였다. 그리고 사용자 프로그램 개발에 가장 최신 기술인 WPF를 이용하여 각 주차 차량의 상세정보와 주차 시간 및 남은 주차 공간 정보 등 전체 주차관리 사항을 화면이동 없이 관리할 수 있도록 개선된 UI를 설계하였다. 본 논문에서 사용된 emguCV는 Intel 기반의 환경에서 최적화된 성능을 나타내었다. 따라서 본 논문에서는 0.5초 이내의 번호판 인식 처리 시간과 90% 이상의 인식률이라는 결과를 얻었다. 또한 관리자가 전체 시스템을 간편하고 직관적으로 관리할 수 있게 UI가 개선되었음을 보였다.

기울기 보정 알고리즘을 이용한 측면에서의 차량 번호 인식 기술 연구 (A Study on Vehicle Number Recognition Technology in the Side Using Slope Correction Algorithm)

  • 이재범;장종욱;장성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.465-468
    • /
    • 2022
  • 교통사고 발생률은 매년 증가하고 있으며 대한민국은 OECD 국가 중에서 상위권에 속한다. 이를 개선하기 위해 다양한 도로교통법이 시행되고 있으며 무인 속도 카메라, 교통단속 카메라 등의 장비를 사용한 다양한 교통단속 방법이 적용되고 있다. 그러나 운전자는 네비게이션을 통해 교통단속 카메라의 위치를 사전 감지하여 단속을 회피함에 따라 불시 단속이 가능한 이동식 단속시스템이 필요하며, 정확한 단속을 위해 도로 측면에서 차량 번호판 인식률을 높일 수 있는 연구가 필요하다. 본 논문에서는 영상처리를 이용한 기울기 보정 알고리즘를 적용하여 도로 측면에서의 차량 번호 인식률을 향상을 위한 방법을 제안한다. 또한 문자 인식 정확도 향상을 위해 CNN 기반의 YOLO 알고리즘을 이용하여 커스텀 데이터 학습을 진행하였다. 해당 알고리즘을 설치 장소에 대한 제약이 없는 이동식 교통단속 카메라 등에 활용 가능할 것으로 기대된다.

  • PDF

도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계 (The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions)

  • 손수락;정이나;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.223-230
    • /
    • 2021
  • 현재 자율주행차량은 테스트 이후 상용화를 눈앞에 두고 있다. 그러나 아직 자율주행차량이 완벽히 상용화되지 않았음에도 81건의 사고가 발생했으며, 사고를 피하기 위한 차량의 주행 방식은 LiDAR에 많이 의존하고 있다. 현재 상용화된 3레벨 자율주행차량이 4레벨 자율주행차량으로 발전하기 위해서는 기존에 수집되는 정보보다 더 많은 정보를 수집해야만 한다. 따라서 본 논문에서는 기존의 자율주행차량에서 수집하는 정보인 도로 정보, 기상정보를 포함하여 차량이 주행 중인 도로의 거칠기와 자기 자신 및 주변 차량의 탑승객 상태를 정확하게 인식하여 차량이 처한 위기 상황을 정확하게 계산하는 Driving Situation Judgment System (DSJS)을 제안한다. DSJS의 PDM에 대한 실험 결과, PDM은 기존 차량의 탑승객 인식 시스템보다 평균적으로 15.52% 더 정확하게 탑승객을 분류할 수 있었다. 본 연구는 기존 3단계 자율주행차량이 수집하는 데이터보다 더 다양한 종류를 수집하여 4단계 자율주행차량을 달성하는 기초연구가 될 수 있다.