• Title/Summary/Keyword: Vehicle information recognition

Search Result 373, Processing Time 0.032 seconds

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Real-time Vehicle License Plate Recognition Method using Vehicle-loaded Camera (차량 탑재용 카메라를 이용한 실시간 차량 번호판 인식 기법)

  • Chang, Jae-Khun
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.147-158
    • /
    • 2005
  • Day after day the information of vehicle under the complex traffic environments is greatly required not only for traffic flow but also for vehicle disclosure of traffic violation, Vehicle information can be obtained from a recognition of vehicle license plate, This paper proposes a new vehicle plate recognition mechanism that uses moving style vehicle-loaded camera, The method is a real-time processing system using multi-step image processing and recognition process that recognizes general vehicles and special purpose vehicles, The experimental results of real environmental image and recognition using the proposed method are shown.

  • PDF

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Vehicle License Plate Recognition Method Robuse to Changes in Lighting Conditions (빛의 변화에 강건한 차량번호판 인식방법)

  • Nam, Kee-Hwan;Bae, Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.160-164
    • /
    • 2005
  • The process of recognizing a vehicle involves detection of the vehicle, recognition of the vehicle model, and identification of the vehicle. The process of vehicle identification involves identification of the vehicle itself, such as by recognition of the license plate on the vehicle. In this paper the method involves the use of a beam splitter to divide incident rays into two directions, a transmitted beam and a reflected beam of different light intensities, and synthesizing two captured images using CCD devices from each beam, thus producing fluctuation-free images of a wide dynamic range even when the subject is moving. A prototype license plate recognition system was also developed using the experimental sensing device. The system achieved a 98.7% recognition rate on 466 images of moving vehicles, which demonstrates its effectiveness as a license plate recognition system.

Vehicle Recognition using Non-negative Tensor Factorization (비음수 텐서 분해를 이용한 차량 인식)

  • Ban, Jae Min;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.136-146
    • /
    • 2015
  • The active control of a vehicle based on vehicle recognition is one of key technologies for the intelligent vehicle, and the part-based image representation is necessary to recognize vehicles with only partial shapes of vehicles especially in urban scene where occlusions frequently occur. In this paper, we implemented a part-based image representation scheme using non-negative tensor factorization(NTF) and realized a robust vehicle recognition system using the NTF feature. The result shows that the proposed method gives more intuitive part-based representation and more robust recognition in urban scene.

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Design and Implementation of a Real-Time Vehicle's Model Recognition System (실시간 차종인식 시스템의 설계 및 구현)

  • Choi Tae-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.877-889
    • /
    • 2006
  • This paper introduces a simple but effective method for recognizing vehicle models corresponding to each maker by information and images for moving vehicles. The proposed approach is implemented by combination of the breadth detection mechanism using the vehicle's pressure, exact height detection by a laser scanning, and license plate recognition for classifying specific vehicles. The implemented system is therefore capable of robust classification with real-time vehicle's moving images and established sensors. Simulation results using the proposed method on synthetic data as well as real world images demonstrate that proposed method can maintain an excellent recognition rate for moving vehicle models because of image acquisition by 2-D CCD and various image processing algorithms.

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.

Vehicle License Plate Recognition System on PDA for Illegal Parking Car Regulation (주정차 단속을 위한 PDA 기반의 자동차번호판 인식 시스템)

  • Yoon Hee-Joo;Cho Hoon;Koo Kyung-Mo;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.792-795
    • /
    • 2006
  • In this paper, we propose a method of vehicle license plate recognition on PDA for illegal parking car regulation. we classified three kinds of vehicle license plates being used down to date since the introduction of each vehicle license Plate using features of each one. And we recognized vehicle license plates segmentation the AreaName, the AreaCode, the TypeCharacter and the Numbers. A 88.7% recognition accuracy was obtained through the experiment of the proposed vehicle license plate recognition system using the obtained images of PDA.

  • PDF