• Title/Summary/Keyword: Vehicle imaging

Search Result 84, Processing Time 0.039 seconds

A Black Ice Detection Method Using Infrared Camera and YOLO (적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법)

  • Kim, Hyung Gyun;Jang, Min Seok;Lee, Yon Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1874-1881
    • /
    • 2021
  • Black ice, which occurs mainly on the road, vehicle traffic bridges and tunnel entrances due to the sub-zero temperature due to the slip of the road due to heavy snow, is not recognized because the image of asphalt is transmitted in the driver's view, so the vehicle loses braking power because it causes serious loss of life and property. In this paper, we propose a method to identify the black ice by using infrared camera and to identify the road condition by using deep learning to compensate for the disadvantages of existing black ice detection methods (artificial satellite imaging, checking the pattern of slip by ultrasonic reception, measuring the temperature of the road surface, and checking the difference in friction force of the tire during vehicle driving) and to reduce the size of the sensor to detect black ice.

Slope Stability in Logging Areas Using Unmanned Aerial Vehicle Imaging (무인항공기 영상 촬영을 활용한 벌목지역의 비탈면 안정성 평가)

  • Kim, Tae-Wan;Yoo, Hyung-Sik;Park, Seok-In;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.39-47
    • /
    • 2022
  • This study aims at evaluating the stability of disaster risks, such as schools, apartments, and geotechnical structures located around slopes in urban areas. The research conducted an aerial photography analysis on where the slope of the retaining wall behind 𐩒𐩒 High School in Gwangju collapsed in August 2018 due to heavy rain. In general, the overflow of rainwater has been managed through drainage channels around slopes during the rainy season, and the surface flow of rainfall was limited due to the presence of dense forests in the area. However, when the slope collapsed, a lot of water flowed out of the ground, and the saturated surface layer ground was destroyed. To analyze the cause, the changed terrain of the upper slope area, which could not be directly identified, was photographed using unmanned aerial vehicles. Digital Elevation Model by unmanned aerial vehicle shooting was performed by analyzing the slope map, calculating the direction of rainfall and the length and width of water-logged areas. The change in the instability of the slope over time due to a 10-day rainfall was also analyzed through numerical analysis.

Thermal Imaging Camera Development for Automobiles using Detail Enhancement Technique (디테일 향상 기법을 적용한 자동차용 열상카메라 개발)

  • Cho, Deog-Sang;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.687-692
    • /
    • 2018
  • In this paper, the development of an automotive thermal imaging camera providing image information for ADAS (Advanced Driver Assist System) and autonomous vehicles is described and an improved technique to enhance the details of the image is proposed. Thermal imaging cameras are used in various fields, such as the medical, industrial and military fields, for the purpose of temperature measurement and night vision. In automobiles, they are utilized for night vision systems. For their utilization in ADAS and autonomous vehicles, appropriate image resolution and enhanced detail are required for object recognition. In this study, a $640{\times}480$ resolution thermal imaging camera that can be applied to automobiles is developed and the BDE (Block-Range Detail Enhancement) technique is applied to improve the details of the image. In order to improve the image detail obtained in various driving environments, the block-range values between the target pixel and the surrounding 8 pixels are calculated and classified into 5 levels. Then, different factors are added or subtracted to obtain images with high utilization. The improved technique distinguishes the dark part of the image by the resulting temperature difference of 130mK and shows an improvement in the fine detail in both the bright and dark parts of the image. The developed thermal imaging camera using the improved detail enhancement technique is applied to a test vehicle and the results are presented.

Class 1·3 Vehicle Classification Using Deep Learning and Thermal Image (열화상 카메라를 활용한 딥러닝 기반의 1·3종 차량 분류)

  • Jung, Yoo Seok;Jung, Do Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.96-106
    • /
    • 2020
  • To solve the limitation of traffic monitoring that occur from embedded sensor such as loop and piezo sensors, the thermal imaging camera was installed on the roadside. As the length of Class 1(passenger car) is getting longer, it is becoming difficult to classify from Class 3(2-axle truck) by using an embedded sensor. The collected images were labeled to generate training data. A total of 17,536 vehicle images (640x480 pixels) training data were produced. CNN (Convolutional Neural Network) was used to achieve vehicle classification based on thermal image. Based on the limited data volume and quality, a classification accuracy of 97.7% was achieved. It shows the possibility of traffic monitoring system based on AI. If more learning data is collected in the future, 12-class classification will be possible. Also, AI-based traffic monitoring will be able to classify not only 12-class, but also new various class such as eco-friendly vehicles, vehicle in violation, motorcycles, etc. Which can be used as statistical data for national policy, research, and industry.

과학기술위성 2호 운영개념

  • Lee, Seung-Hun;Keum, Jung-Hoon;Park, Jong-Oh;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-85
    • /
    • 2004
  • In this study, the operations concept of STSAT-2 which will be launched by KSLV-1, the first Korean Space Launch Vehicle, from Naro is explained. The major tasks of STSAT-2 is acquiring Lyman-alpha images of Sun by LIST(Lyman-alpha Imaging Solar Telescope) payload and the exact position of the satellite by calculating distance between STSAT-2 and SLR ground stations using SLR(Satellite Laser Ranging) payload. Also spacecraft technology verification is performed.

  • PDF

Non-Operative Management of Traumatic Gallbladder Bleeding with Cystic Artery Injury: A Case Report

  • Kim, Tae Hoon
    • Journal of Trauma and Injury
    • /
    • v.34 no.3
    • /
    • pp.208-211
    • /
    • 2021
  • Gallbladder injuries are rare in cases of blunt abdominal trauma and are usually associated with damage to other internal organs. If the physician does not suspect gallbladder injury and check imaging studies carefully, it may be difficult to distinguish a gallbladder injury from gallbladder stone, hematoma, or bleeding. Therefore, in order not to miss the diagnosis, the clinical findings and correlation should be confirmed. In the present case, a 60-year-old male presented to a local trauma center complaining of pain in the upper right quadrant and chest wall following a motor vehicle collision. Abdominal computed tomography (CT) showed a hepatic laceration and hematoma in the parenchyma in segments 4, 5, and 6 and active bleeding in the lumen of the gallbladder. Traumatic gallbladder injuries generally require surgery, but in this case, non-operative management was possible with cautious follow-up consisting of abdominal CT and angiography with repeated physical examinations and hemodynamic monitoring in the intensive care unit.

Radiological assessment and follow-up of a nonsurgically treated odontoid process fracture after a motor vehicle accident in Egypt: a case report

  • Ahmad Mokhtar Abodahab
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.411-415
    • /
    • 2023
  • An odontoid process fracture is a serious type of cervical spine injury. This injury is categorized into three types based on the location of the fracture. Severe or even fatal neurological deficits can occur due to associated cord injury, which can result in complete quadriplegia. Computed tomography is the primary diagnostic tool, while magnetic resonance imaging is used to evaluate any associated cord injuries. These injuries can occur either directly from the injury or during transportation to the hospital if mishandled. There are two main treatment approaches: surgical fixation or external nonsurgical fixation, with various types and models of fixation devices available. In this case study, computed tomography follow-up confirmed that external fixation can yield successful results in terms of complete healing, even in cases complicated by other factors that may impede healing, such as pregnancy.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.