• Title/Summary/Keyword: Vehicle dynamics control

Search Result 371, Processing Time 0.028 seconds

Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles (적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발)

  • 원문철;강연준;강병배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

Unified Control of Independent Braking and Steering Using Optimal Control Allocation Methods for Collision Avoidance (전(全)방향 충돌 회피를 위한 액츄에이터 최적 분배 알고리즘)

  • Kim, Kyuwon;Kim, Beomjun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a unified control algorithm of independent braking and steering for collision avoidance. The desired motion of the vehicle in the yaw plane is determined using the probabilistic risk assessment method based on target state estimation. For the purpose of coordinating the independent braking and steering, a non-linear vehicle model has been developed, which describes the vehicle dynamics in the yaw plane in both linear and extended non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints. The performance of the proposed control algorithm has been investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Absolute Vehicle Speed Estimation using Neural Network Model (신경망 모델을 이용한 차량 절대속도 추정)

  • Oh, Kyeung-Heub;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

An Adaptive Fuzzy Control System for the Speed Control of the Autonomous Surface Vehicle with Nonaffine Nonlinear Dynamics (비-어파인 비선형 동특성을 갖는 무인 자율 이동 보트의 속도 제어를 위한 적응 퍼지 제어 계통)

  • Park, Young-Hwan;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, an adaptive fuzzy control system is proposed for the speed control of the ASV (Autonomous Surface Vehicle) with nonaffine nonlinear system dynamics. We consider the turning speed of the screw propeller to be the control input instead of thrust so that we do not have to know the exact function between turning speed and thrust. But in this case, the ASV becomes a nonaffine nonlinear system because thrust is a nonlinear function of the turning speed. To solve this problem, we propose a Takagi-Sugeno fuzzy-model-based control system and simulation studies are performed. Simulation results show the effectiveness of the proposed control scheme.

Hydraulic System Modeling far Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템을 위한 유압시스템의 동적 모델링)

  • 허건수;임훈기;서문석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.282-287
    • /
    • 2003
  • DTTS(Dynamic Track Tensioning System) system requires robust control performance for the various maneuvering tasks. However, it is very difficult to tune the controller gains in experiments. In this paper, the hydraulic unit is modeled and constructed into the DTTS control module in Matlab/Simulink The control module is interfaced to the vehicle dynamics module so that the control performance of the DTTS system can be evaluated in simulations. The dynamics data and control input data are exchanged between two modules at each control time-step. The gains in the fuzzy-logic controller are varied and the control performance is evaluated in simulations. The proposed simulation tool can be very useful for the gain tuning of track tension controller in bucked vehicles

  • PDF

A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability (String Stability를 보장하는 정지/서행 순항제어 시스템)

  • 박요한;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

The simulation of INS error due to gimbal servo dynamics (김블 서어보 다이나믹스에 의한 INS 오차 시뮬레이션)

  • 김현백;정태호;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.281-285
    • /
    • 1986
  • In this paper, the characteristics of disturbance torque of gimbal servo dynamics are studied, and the simulation methods of gimbal servo dynamics and INS error due to angular rate and linear acceleration of vehicle are proposed. In results of the simulation for a specific INS, it is estimated that INS velocity error due to gimbal servo dynamics is nearly proportional to square of vehicle acceleration.

  • PDF

Longitudinal Spacing Control of Vehicles in a Platoon

  • No, Tae-Soo;Chong, Kil-To
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.92-97
    • /
    • 2000
  • The Lyapunov stability theorem is used to derive a control law that can be used to control the spacing between vehicles in a platoon. A third order system is adopted to model the vehicle and power-train dynamics. In addition, the concept of

  • PDF