• Title/Summary/Keyword: Vehicle dynamics

Search Result 960, Processing Time 0.033 seconds

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

DYNAMICS OF AN ACTIVELY GUIDED TRACK INSPECTION VEHICLE

  • Zeng, C.C.;Bao, J.H.;Zhang, J.W.;Li, X.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.777-784
    • /
    • 2006
  • The lateral dynamic behaviours of a track inspection vehicle with laterally guided system are studied for the safety and comfort. A 10-DOF dynamic model is proposed counting for lateral and yaw motions. The equations for motions of the vehicle running on curved tracks at a constant speed are presented. It is shown by simulation that lateral guiding forces applied to the guiding wheels on the inner side of the track increase in a larger scale in comparison with those on the outer side when the vehicle passes through curved tracks with cant, and the front guiding spring forces is larger than the rears. Lateral vibrations due to yaw motions of the vehicle take place when the vehicle runs through curved tracks. Finally, effect of the lateral guidance on the vehicle dynamics is also examined and advantages of such a guiding system are discussed in some details. An optimal guided control is applied to restrain the lateral and yaw motions. The comparisons between the active and passive guidance explain the effect of the active control approaches.

Steering Control of Differential Brake System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차동 브레이크 시스템의 조향제어)

  • 윤여흥;제롬살랑선네;장봉춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.233-237
    • /
    • 2002
  • Vehicle Dynamics Control(VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC. In order to help the car to turn, a yaw moment can be achieved by altering the left/light and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since Fuzzy logic can consider the nonlinear effect of vehicle modeling, Fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

  • PDF

Development of Real Time Multibody Vehicle Dynamics Software Part I : Real Time Vehicle Model based on Subsystem Synthesis Method (실시간 다물체 차량 동역학 소프트웨어 개발 Part Ⅰ: 부분시스템 합성방법에 의한 실시간 차량 모델)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Lee, Chang-Ho;Jung, Do-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • The real-time multibody vehicle model based on the subsystem synthesis method has been developed. Suspension, anti roll bar, steering, and tire subsystem models have been developed for vehicle dynamics. The compliance effect from bush element has been considered using a quasi-static method to achieve the real time requirement. To validate the developed vehicle model, a quarter car and a full vehicle simulations have been carried out comparing simulation results with those from the ADAMS vehicle model. Real time capability has been also validated by measuring CPU time of the simulation results.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

Preview Control of High Mobility Tracked Vehicle Suspension with multiple wheels

  • Kim, Yoonsun;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.3-115
    • /
    • 2002
  • To improve the performance of the tracked vehicle system, we examined the feasibility of using the preview control for the tracked vehicles suspension system. We proposed a method to apply a linear optimal preview control to the tracked vehicle system. To avoid the complexity of modeling the track subsystem and kinematical nonlinearity in the trailing arm suspension, we classified these as unknown dynamics and disturbances. We used the Time Delay Control(TDC) method to make sprung mass dynamics follow that of linear preview controlled tracked vehicle model by compensating the uncertainties and disturbances. We have verified by the computer simulation that the proposed method shows good robus...

  • PDF

A fast precise integration method for structural dynamics problems

  • Gao, Q.;Wu, F.;Zhang, H.W.;Zhong, W.X.;Howson, W.P.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • A fast precise integration method (FPIM) is proposed for solving structural dynamics problems. It is based on the original precise integration method (PIM) that utilizes the sparse nature of the system matrices and especially the physical features found in structural dynamics problems. A physical interpretation of the matrix exponential is given, which leads to an efficient algorithm for both its evaluation and subsequently the solution of large-scale structural dynamics problems. The proposed algorithm is accurate, efficient and requires less computer storage than previous techniques.

A Development of New Vehicle Model for Yaw Rate Estimation (요각속도 추정을 위한 새로운 차량 모델의 개발)

  • Bae, Sang-Woo;Shin, Moo-Hyun;Kim, Dae-Kyun;Lee, Jang-Moo;Lee, Jae-Hyung;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF

Longitudinal static stability requirements for wing in ground effect vehicle

  • Yang, Wei;Yang, Zhigang;Collu, Maurizio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.259-269
    • /
    • 2015
  • The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

Absolute Vehicle Speed Estimation using Neural Network Model (신경망 모델을 이용한 차량 절대속도 추정)

  • Oh, Kyeung-Heub;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.