• Title/Summary/Keyword: Vehicle driving simulator

Search Result 247, Processing Time 0.023 seconds

Effects of Situation Awareness and Decision Making on Safety, Workload and Trust in Autonomous Vehicle Take-over Situations (자율주행 자동차의 제어권 전환상황에서 상황인식 및 의사결정 정보 제공이 운전자에게 미치는 영향)

  • Kim, Jihyun;Lee, Kahyun;Byun, Youngsi
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2019
  • Take-over requests in semi-autonomous cars must be handled properly in the case of road obstacles or curved roads in order to avoid accidents. In these situations, situation awareness and appropriate decision making are essential for distracted drivers. This study used a driving simulator to investigate the components of auditory-visual information systems that affect safety, workload, and trust. Auditory information consisted of either voice guidance providing situation awareness for the take-over or a beep sound that only alerted the driver. Visual information consisted of either a screen showing how to maneuver the vehicle or only an icon indicating a take-over situation. By providing auditory information that increased situation awareness and visual information that aided decision making, trust and safety increased, while workload decreased. These results suggest that the levels of situation awareness and decision making ability affect trust, safety, and workload for drivers.

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

The Effects of in Vehicle Watching TV on Driver Behavior (운전 중 TV시청이 운전행동에 미치는 영향)

  • Sin, Yong-Gyun;Im, Pyeong-Nam;Gang, Su-Cheol;Ryu, Jun-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.103-112
    • /
    • 2006
  • For recent innovation of If technology and the beginning of Digital Multimedia Broadcasting (DMB) service, it has been dramatically increased to setup TV system in a car for watching TV and receiving traffic Information. Watching TV while driving would distract a driver s cognitive and visual attention as eating food, operating the radio, using a cell phone. However, there is paucity of empirical researches and it is uncertain how watching TV in driving impacts on the driver's cognition in the concrete. Therefore, we surveyed domestic drivers on the attitude watching TV while driving as well as conducted experiments through a driving simulator. Especially, we recruited two groups of participants to explore the effects of watching TV on driving behavior. The result proved that the participants who watched TV while their driving had relatively narrower the attention span than the Participants who did not watch TV. Also, those who watched TV drove with less stability and more urgent operations of the brake and accelerator than those who did not watched TV Finally, we discussed limitations and implications of the study.

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

Performance Evaluation for Several Control Algorithms of the Actuating System Using G/C HILS Technique (비행 전구간 유도제어 HILS 기법을 적용한 구동제어 알고리즘 성능 평가 연구)

  • Jeon, Wan Soo;Cho, Hyeon Jin;Lee, Man Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.114-129
    • /
    • 1996
  • This paper describes the whole development phase for the underwater vehicle actuating system with high hydroload torque disturbance. This includes requirement analysis, system modeling, control algorithm design, real time implementation, test and performance evaluations. As for driving control algorithms, fuzzy logic, variable structure and PD(Proportional-Differential) algorithm were designed and implemented on board controller using a single chip microprocessor. Intel 8797. And test and performance evaluation is carried out both single test and wystem integration test. We could confirm the basic performance of actuating system through the single test and gereral developing work of any actuating systems was finished with a single performance test of actuating system without system integration test. But, we suggested that system integration test be needed. System integration test is carried out using G/C HILS(Guidance and Control Hardware-In-the -Loop Simulation) which is constituted flight motion simulator, load simulator, real time host computer and the related subsystems such as inertial navigation system, power supply system and Guidance and Control Computer etc.. The most important practical contribution of this paper is that full system characteristics such as minimal control effort, enhancement of guidance and autopilot performance by the actuating system using G/C HILS technique are investigated. Through full running G/C HILS, in spite of the passing to single tests, some control algorithm resulted in failure as to stability of full system and system time frame.

  • PDF

Development of Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 센싱 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.649-657
    • /
    • 2004
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart wiper system and the rain sensing algorithm that regulate speed and interval of wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in the simulator model. Especially the vision sensor can measure wider area relatively than the optical rain sensor, hence, this grasps rainfall state more exactly in case disturbance occurs.

Development and Performance of BMS Modules for Urban Electric Car Using Life Prediction Method (수명 예측 기법을 이용한 도시형 전기자동차 BMS 모듈 개발 및 차량 성능에 관한 실험 연구)

  • Lee, Jungho;Park, Chanhee;Yang, Gyuneui;Shim, Gangkoo;Bae, Chulmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.147-154
    • /
    • 2013
  • This study reports on the development and investigation of a BMS module using a new algorithm on the driving performance and battery life of electric vehicles. Here, the initial SOC was calculated using an open circuit voltage (OCV) method and a current integral method was later applied to the BMS module. We verified the performance of the BMS module by comparing both the results of the in-vehicle test and the BMS simulator test. Our verification test showed good agreement between the results of experiments and simulation with a small error of ${\pm}0.8%$. Here, we confirmed that the present, newly-developed BMS module not only can predict the battery life but can also monitor SOC, pack voltage, and current temperature.

Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 감지 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Im, Hong-Jun;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1727-1730
    • /
    • 2003
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart windshield wiper system and the rain sensing algorithm that regulate speed and operation period of windshield wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in simulator model. In especial, the vision sensor can measure wide area relatively than the optical rain sensor. hence, this grasp rainfall state more exactly in case disturbance occurs.

  • PDF

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Analysis of the Effect of Yellow Carpet Installation according to Driving Behavior with Eye Tracking Data (가상주행실험 기반 운전자 시각행태에 따른 옐로카펫 설치 효과 분석)

  • Sungkab Joo;Dohoon Kim;Hyemin Mun;Homin Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.43-52
    • /
    • 2023
  • Traffic accidents among children have been decreasing after the installation of yellow carpets. However, the explanatory power of the causal relationship between yellow carpet installation and traffic accidents is still insufficient. The yellow carpet effect was analyzed in greater depth using virtual reality (VR) simulation experiments in various situation that could not be evaluated in existing actual vehicle research studies due to difficulties or risks in implementation. A target site where an actual yellow carpet was installed was selected and, implemented into a virtual environment. Subjects were made to, were gaze measurement equipment and ride the simulator. The visual/driving behavior before and after yellow carpet installation was compared, and a t-test analysis was performed for statistical verification. All the results were found to be statistically significant.