• Title/Summary/Keyword: Vehicle detection

Search Result 1,314, Processing Time 0.027 seconds

Misfire Detection by Using the Crankshaft Speed Fluctuation(2) : Vehicle Test (크랭크축 각속도의 변동을 이용한 실화 판정(2) - 실차 실험)

  • 배상수;김세웅;임인건;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.90-99
    • /
    • 1996
  • To keep up with the regulation of OBD II(on board diagnostics II), many detection methods for engine misfire have been developed. Among them, the method of using the crankshaft speed fluctuation is the most noticeable in the point of view of lower cost and easier installation than any others. On the basis of the results obtained from the previous engine-dynamometer test, the integrating torque index (ITI) has been introduced. In this research, the instrumental and the interfacing systems to engine control unit(ECU) are developed for the vehicle test. Therefore, the vehicle and chassis-dynamometer test can be carried out in addition to the rough road test. From this test, the previousproposed method proved that it can be applied to the real vehicle.

  • PDF

The Method for detecting leakage current of a electric vehicle (전기 구동 차량의 누설 전류 검출 기법)

  • Park, Hyunseok;Eom, Jeongyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.139.1-139.1
    • /
    • 2011
  • Electric vehicle use independent electricity of high voltage. if isolation of electricity is destructed, devices and people are considerably damaged. Therefore, detection of ground fault is necessary for electric vehicle. As the existing detection method of ground fault can not detect ground fault when isolation of both positive side and negative side of electricity is destructed, and change of voltage of electricity. This paper proposed detection method for ground fault of both two sides of electricity and change of voltage. The proposed method is verified by analysis of equivalent circuit.

  • PDF

Detection and Recognition of Vehicle Brake Lights using an R-Filtering (R-필터링을 이용한 자동차 브레이크등 검출과 인식)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2011
  • This paper proposes a new method of vehicle brake lights detection and recognition using an R-filtering. Firstly, the proposed method processes the R-filtering with the first input image and then with the second one in order to detect brake lights. Secondly, the method counts the number of red pixels and computes the mean value in each R-filtered image. The difference rates between the numbers of the red pixels and between the mean values of two images are defined in this paper. Through the analysis of the difference rates, it can recognize whether brake lights are turned on or off, and whether the vehicle ahead is being approached or not. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithm is quite successful.

A Survey of Research on Human-Vehicle Interaction in Defense Area (국방 분야의 인간-차량 인터랙션 연구)

  • Yang, Ji Hyun;Lee, Sang Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.155-166
    • /
    • 2013
  • We present recent human-vehicle interaction (HVI) research conducted in the area of defense and military application. Research topics discussed in this paper include: training simulation for overland navigation tasks; expertise effects in overland navigation performance and scan patterns; pilot's perception and confidence on an overland navigation task; effects of UAV (Unmanned Aerial Vehicle) supervisory control on F-18 formation flight performance in a simulator environment; autonomy balancing in a manned-unmanned teaming (MUT) swarm attack, enabling visual detection of IED (Improvised Explosive Device) indicators through Perceptual Learning Assessment and Training; usability test on DaViTo (Data Visualization Tool); and modeling peripheral vision for moving target search and detection. Diverse and leading HVI study in the defense domain suggests future research direction in other HVI emerging areas such as automotive industry and aviation domain.

Failsafe Logic for a vehicle Stability Control System (차량 주행안정성 제어시스템의 자동안전 로직)

  • Min, Kyung-Chan;Lee, Gun-Bok;Yi, Kyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1685-1691
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in an Electronic Stability Program(ESP). The aim of this paper is to prevent of erroneous controls in the ESP. Developed this paper introduces the fault detection logic and evaluation of residual signals. The failsafe logic consists of four redundant sub-models, which can be used for detecting the faults in various sensors (yaw rate, lateral acceleration, steering wheel angle). We present two mathematical residual generation methods : one is a method using the average value and the other is a method using the minimum value of the each residual. We verified a failsafe logic developed using vehicle test results also we compare vehicle model based simulation results with test vehicle results.

Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Cameras (어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기)

  • Hieu, Tang Quang;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.

A Study on the Trigger Technology for Vehicle Occupant Detection (차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구)

  • Lee, Dongjin;Lee, Jiwon;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.120-122
    • /
    • 2021
  • Currently, as demand for cars at home and abroad increases, the number of vehicles is decreasing and the number of vehicles is increasing. This is the main cause of the traffic jam. To solve this problem, it operates a high-ocompancy vehicle (HOV) lane, a multi-passenger vehicle, but many people ignore the conditions of use and use it illegally. Since the police visually judge and crack down on such illegal activities, the accuracy of the crackdown is low and inefficient. In this paper, we propose a system design that enables more efficient detection using imaging techniques using computer vision to solve such problems. By improving the existing vehicle detection method that was studied, the trigger was set in the image so that the detection object can be selected and the image analysis can be conducted intensively on the target. Using the YOLO model, a deep learning object recognition model, we propose a method to utilize the shift amount of the center point rather than judging by the bounding box in the image to obtain real-time object detection and accurate signals.

  • PDF

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템)

  • Jung, Woojin;Park, Jinuk;Park, Yongju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1794-1799
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data.

Vehicle Tracking System using HSV Color Space at nighttime (HSV 색 공간을 이용한 야간 차량 검출시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • We suggest that HSV Color Space may be used to detect a vehicle detecting system at nighttime. It is essential that a licence plate should be extracted when a vehicle is under surveillance. To do so, a licence plate may be enlarged to certain size after the aimed vehicle is taken picture from a distance by using Pan-Tilt-Zoom Camera. Either Mean-Shift or Optical Flow Algorithm is generally used for the purpose of a vehicle detection and trace, even though those algorithms have tendency to have difficulty in detection and trace a vehicle at night. By utilizing the fact that a headlight or taillight of a vehicle stands out when an input image is converted in to HSV Color Space, we are able to achieve improvement on those algorithms for the vehicle detection and trace. In this paper, we have shown that at night, the suggested method is efficient enough to detect a vehicle 93.9% from the front and 97.7% from the back.

Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing (가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출)

  • Kim, Hyun-Tae;Lee, Geun-Hoo;Park, Jang-Sik;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.967-974
    • /
    • 2012
  • In this paper, a vehicle detection algorithm with HD CCTV camera images using GMM(Gaussian Mixture Model) algorithm and mathematical morphological processing is proposed. At the first stage, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the second stage, candidated object were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations depend on distance and vehicle type in tunnel. Through real experiments in tunnel, it is shown that the proposed system works well.