• Title/Summary/Keyword: Vehicle cruise control system

검색결과 104건 처리시간 0.02초

지능형 순항 제어 시스템 모델링 및 제어 (A Modeling and Control of Intelligent Cruise Control Systems)

  • 이세진;홍진호;이경수
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

Leading Vehicle State Estimator for Adaptive Cruise Control and Vehicle Tracking

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.181-184
    • /
    • 1999
  • Leading vehicle states are useful and essential elements in adaptive cruise control (ACC) system, collision warning (CW) and collision avoidance (CA) system, and automated highway system (AHS). There are many approaches in ACC using Kalman filter. Mostly only distance to leading vehicle and velocity difference are estimated and used for the above systems. Applications in road vehicle in curved road need to obtain more informations such as yaw angle, steering angle which can be estimated using vision system. Since vision system is not robust to environment change, we used Kalman filter to estimate distance, velocity, yaw angle, and steering angle. Application to active tracking of target vehicle is shown.

  • PDF

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구 (An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation)

  • 이경수;이찬규
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어 (Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle)

  • 이세진;이경수
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

OSEK OS 기반 ACC/LKS 통합제어기 구현 (Implementation of Integrated Controller of ACC/LKS based on OSEK OS)

  • 최단비;이경중;안현식
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.1-8
    • /
    • 2013
  • 본 논문에서는, 차량 섀시 제어시스템 중 ACC(Adaptive Cruise Control)와 LKS(Lane Keeping System)를 통합하여 차량용 OS인 OSEK OS 기반으로 구현하고 실험을 통하여 그 성능을 분석한다. 최근 자동차의 안전성을 향상시키기 위해 능동 안전 및 운전자 지원 시스템이 논의 되고 있다. 그 중 차량의 종방향에 대한 가감속 제어를 수행하는 ACC와 차량이 차선을 유지할 수 있도록 보조해주는 LKS를 통합하여 차량 내 제어시스템을 구현한다. 구현한 제어시스템은 차량용 소프트웨어의 재사용성과 안전성 및 응용 소프트웨어의 하드웨어 의존성 제거 등을 목표로 표준 제안된 OSEK/VDX를 적용한다. OSEK/VDX에서 지원하는 OSEK OS를 기반으로 재설계한 제어시스템은 실시간 태스크 관리와 인터럽트 처리 및 공유자원 관리가 가능하다. EILS(ECU-In-the-Loop Simulation) 수행 결과에 의해 OSEK OS 기반의 ACC/LKS 통합제어기와 기존 일체형 펌웨어로 구현한 ACC/LKS 통합제어기가 대등함을 입증한다.

지능형 차량을 위한 차간거리에 따른 능동 주행 제어 시스템 연구 (An Adaptive Cruise Control Systems for Intelligent Vehicles in Accordance with Vehicles Distance)

  • 배종일
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1157-1162
    • /
    • 2013
  • This thesis describes the active cruise control which is a part of AVHS(Advanced Vehicle and Highway System) in the ITS(Intelligent Transportation Systems). The active cruise control is a system which recognizes some obstructions and vehicles in front, drives in safe speed and puts on the brake in dangerous situations as the driver simply turns on the switch without stepping on the accelerator and brake. PID controller is used in the speed-control by linearizing the longitudinal model of the vehicle, obstacle detecting algorithm which makes use of the laser scanner is proposed to recognize the situation in front and the system's performance is tested.

찻간 속도/거리제어를 위한 구동력/제동력 통합제어 (Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control)

  • 이세진;이경수
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

DRIVER BEHAVIOR WITH ADAPTIVE CRUISE CONTROL

  • Cho, J.H.;Nam, H.K.;Lee, W.S.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.603-608
    • /
    • 2006
  • As an important and relatively easy to implement technology for realizing Intelligent Transportation Systems(ITS), Adaptive Cruise Control(ACC) automatically adjusts vehicle speed and distance to a preceding vehicle, thus enhancing driver comfort and safety. One of the key issues associated with ACC development is usability and user acceptance. Control parameters in ACC should be optimized in such a way that the system does not conflict with driving behavior of the driver and further that the driver feels comfortable with ACC. A driving simulator is a comprehensive research tool that can be applied to various human factor studies and vehicle system development in a safe and controlled environment. This study investigated driving behavior with ACC for drivers with different driving styles using the driving simulator. The ACC simulation system was implemented on the simulator and its performance was evaluated first. The Driving Style Questionnaire(DSQ) was used to classify the driving styles of the drivers in the simulator experiment. The experiment results show that, when driving with ACC, preferred headway-time was 1.5 seconds regardless of the driving styles, implying consistency in driving speed and safe distance. However, the lane keeping ability reduced, showing the larger deviation in vehicle lateral position and larger head and eye movement. It is suggested that integration of ACC and lateral control can enhance driver safety and comfort even further.

Development of Intelligent Cruise Control System for Automobile

  • Lim. Young Do;lee. Joon Tark;Won, Bang-Suk;Sul. Jae Hoon;Han. Chang Hoon;Kim, . Seung Chul;Park, . Jong Oh
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.199-202
    • /
    • 1998
  • This paper describe an intelligent cruise control system for automobile. With the remarkable numerical increase of automobiles on the road, the optimized traffic flow control using the cruise control is one of the very important traffic problems to overcome the limitation of an existing road capacity. Based on this idea that minimize the fuel cost and the air pollution, and accept a driver's needs for driving, we have developed an intelligent cruise control system for vehicle. This proposed intelligent fuzzy cruise controller was successfully implemented using the fuzzy algorithm, the i80c196 μ-controller board and the throttle valve actuator. The field test results on an linear road was introduced.

  • PDF