• 제목/요약/키워드: Vehicle component

검색결과 676건 처리시간 0.022초

Impacts of wind shielding effects of bridge tower on railway vehicle running performance

  • Wu, Mengxue;Li, Yongle;Zhang, Wei
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.63-77
    • /
    • 2017
  • When railway vehicles run by towers of long span bridges, the railway vehicles might experience a sudden load-off and load-on phenomenon in crosswind conditions. To ensure the running safety of the railway vehicles and the running comfort of the passengers, some studies were carried out to investigate the impacts of sudden changes of aerodynamic loads on moving railway vehicles. In the present study, the aerodynamic coefficients which were measured in wind tunnel tests using a moving train model are converted into the aerodynamic coefficients in the actual scale. The three-component aerodynamic loads are calculated based on the aerodynamic coefficients with consideration of the vehicle movement. A three-dimensional railway vehicle model is set up using the multibody dynamic theory, and the aerodynamic loads are treated as the inputs of excitation varied with time for kinetic simulations of the railway vehicle. Thus the dynamic responses of the railway vehicle passing by the bridge tower can be obtained from the kinetic simulations in the time domain. The effects of the mean wind speeds and the rail track positions on the running performance of the railway vehicle are discussed. The three-component aerodynamic loads on the railway vehicle are found to experience significant sudden changes when the vehicle passes by the bridge tower. Correspondingly, such sudden changes of aerodynamic loads have a large impact on the dynamic performance of the running railway vehicle. The dynamic responses of the railway vehicle have great fluctuations and significant sudden changes, which is adverse to the running safety and comfort of the railway vehicle passing by the bridge tower in crosswind conditions.

구성 부품의 중요도를 활용한 SES/MB 프레임워크 기반 전차 취약성 분석 (A Vulnerability Analysis for Armored Fighting Vehicle based on SES/MB Framework using Importance of Component)

  • 김헌기;황훈규;이장세
    • 한국시뮬레이션학회논문지
    • /
    • 제24권4호
    • /
    • pp.59-68
    • /
    • 2015
  • 본 논문에서는 전투 시스템 중 대표적인 지상 공격 수단인 전차를 대상으로 모델링 및 시뮬레이션 기법을 적용한 취약성 분석 방법에 관한 내용을 다룬다. SES/MB(System Entity Structure/ Model Base) 프레임워크는 복잡한 시스템의 구조를 계층적으로 표현할 수 있으며, 다양한 부품으로 구성된 전차를 모델링하기에 용이하다. 전차의 취약성은 전차가 위협탄에 의해 피격되었을 때, 장갑 및 부품이 파손되거나 관통된 것을 기준으로 분석할 수 있으며 관통 여부는 관통 해석식을 통해 위협탄의 관통 성능과 장갑 및 부품의 방호 성능을 비교한 결과에 따라 결정된다. 방호 성능은 일반 부품과 장갑으로 분류한 전차의 부품 종류 및 정의한 속성에 따라 결정되고, 모든 부품은 중요도를 산정하기 위한 가중치를 가진다. 전차의 취약성을 분석하기 위해 개발한 시뮬레이션 프로그램에서는 위협탄에 의해 관통된 부품 및 피해를 입은 부품의 중요도를 기반으로 하여 전체 취약성을 분석하고, 개별 부품이 전차에서 담당하는 기능을 정의하여 기능별 피해 기준에 따라 취약성을 분석한다.

가솔린 차량의 각 요소별 연료소모량 분석을 위한 실험적 연구 (An Experimental Study on Breakdown of Fuel Consumption on a Component Basis in a Gasoline Engine Vehicle)

  • 유정철;송해박;이종화;유재석;박영무;박경석
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.153-161
    • /
    • 2004
  • A vehicle fuel economy is one of the most important issues in view of environmental regulation and customer's needs. In order to improve the vehicle fuel economy, great efforts has been carried out on the components bases. However, systematic analysis of vehicle fuel consumption is necessary for the further improvement of vehicle fuel economy. In this paper, a methodology for the breakdown of vehicle fuel consumption was studied and proposed for systematic analysis of the vehicle fuel economy. The energy equation for the vehicle power train was set up for the analysis of the vehicle fuel economy and simplified to be calculated or estimated using the measured data in a vehicle. The amount of fuel that was used in vehicle components under arbitrary driving conditions was quantified.

다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Road Noise 개선을 위한 CAE 기반 DFSS Study (CAE-based DFSS Study for Road Noise Reduction)

  • 권우성;유봉준;김병훈;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구 (CAE-based DFSS Study for Road Noise Reduction)

  • 권우성;유봉준;김병훈;김인동
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

무인 컨테이너 운송차량의 절대속도 추정을 위한 뉴럴 네크워크 모델 적용 (Absolute Vehicle Speed Estimation of Unmanned Container Transporter using Neural Network Model)

  • 하희권;오경흡
    • 한국항해항만학회지
    • /
    • 제28권3호
    • /
    • pp.227-232
    • /
    • 2004
  • 차량동역학제어시스템은 복잡하고 비선형이므로 잠금방지 제동시스템 및 자동주행시스템 개발에 어려움이 있다. 차량절대속도를 추정하기 위해 퍼지 로직 기법이 최근 적용되어 정상적인 조건에서 만족할 만한 결과를 얻고 있다. 그러나 급격한 제동시 추정오차가 크게 발생되었다. 본 논문에서는 휠 속도 센서를 이용하여 무인 컨테이너 운송차량의 절대속도를 추정하기 위해, 뉴럴 네트워크 모델의 방사대칭 기저함수와 주성분 분석법을 적용하여 10개의 추정 알고리즘중 오차를 4% 이내로 추정할 수 있는 알고리즘을 제시하였다.

상용 병렬형 하이브리드 시스템의 동력원 용량에 따른 연비 및 비용의 상관관계 분석 (Analysis of Correlation of Fuel Efficiency and Cost Depending on Component Size of Heavy-duty Parallel Hybrid System)

  • 정종렬;이대흥;신창우;임원식;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.73-82
    • /
    • 2011
  • Most of countries start to restrict the emission gases of vehicles especially CO2 because of the global warming. Many vehicle companies including Toyota have launched various HEVs to satisfy the restriction laws and to improve the vehicle's efficiency. However, development for heavy-duty hybrid system is not plentiful rather than the passenger car. In this study, we choose the optimal size of engine, motor and battery for heavy-duty hybrid systems using dynamic programming. Also we analyze the correlation of the system's cost and efficiency because the added cost of vehicle to make the hybrid system is very important factor for the manufacturing companies. Finally, this study suggests a method to choose the appropriate system components size considering its performance and the cost. With this method, it is possible to select the component size for various systems.

SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석 (The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance)

  • 이대흥;정종렬;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.