• Title/Summary/Keyword: Vehicle acceleration

Search Result 814, Processing Time 0.022 seconds

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission (자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발)

  • 임원식;이진원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.

Contribution analysis using transmissibility of a vibration path (진동 전달율에 기반한 기여도 분석 방법)

  • Kim, C.J.;Bae, C.Y.;Lee, D.W.;Lee, B.H.;Kim, H.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.602-603
    • /
    • 2008
  • The design modification of problematic component in a given vibration path is disallowed in order to sacrifice other performances such as ride comport or handling of a vehicle. For this, the paper presents a new contribution analysis based on transmissibility ratio (TR) of acceleration in a definite vibration path to find a proper candidate for design modification. The new contribution analysis is based on the fact that the sensitivity of TR over a small design change is inversely proportional to the magnitude of TR. The new methodology can significantly relieve efforts of time-consumming modal analysis for detail modal information. The theory of proposed contribution analysis is simulated with five-degree-of-freedom open vibration path and confirms that the contribution result is well matched with the variance of TR over a dynamic change on a vibration path.

  • PDF

Design of a Mechanism for Reproducing Hovering Flight of Insects (곤충의 호버링 비행을 구현하는 메카니즘의 설계)

  • 정세용;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

Stability Analysis of Counterbalanced Forklift Trucks (카운터밸런스형 지게차에서의 안정도 해석)

  • Kim, Jae Beom;Shin, Woonchul;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Forklift truck is a very convenient transportation vehicle and widely used in industries. However, a lot of overturn accidents occur during operation because of poor understanding on the stability of forklift trucks. The stability of a forklift is defined by the minimum slope of the ramp where a forklift truck overturns. According to the KS BISO 22915-2 code, the stability is determined from the four kinds of stability tests. The equations for the stability of a forklift truck were proposed already in several published literatures and the equations can be used conveniently to estimate the stability and examine the effects of design parameters in forklift trucks. However, because the detail derivation procedure was omitted, it is very difficult to examine the accuracy of the proposed equations and to modify the equations for other types of forklift trucks. In this paper the stability equations were derived again with detail derivations for the four kinds of stability tests. And the effects of acceleration or centrifugal forces were also additionally included in the equations and minor corrections were also made.

Pyroshock Isolation Performance Test using Wiremesh Isolators (와이어메쉬 절연계의 파이로 충격 절연 성능 시험)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.923-928
    • /
    • 2008
  • Pyrotechnic shock or pyroshock is characterized as a transient vibration phenomenon which shows large acceleration and high frequency range up to 10kHz during the operation of separation devices where explosives are used. During the flight of a launch vehicle, pyroshock is mainly generated at several events such as satellite separation, fairing separation and stage separation. In this paper, wiremesh isolators are introduced and several types of isolators are manufactured for the performance tests. For the investigation of typical characteristics of wiremesh isolators, compressive loading tests are basically performed and pyroshock tests are accomplished to confirm pyroshock isolation ability of each wiremesh isolator by using 4Kg dummy mass.

Pyroshock and Vibration Characteristics of PEEK Washer Shock Absorbers (PEEK 와셔를 적용한 충격저감장치의 파이로 충격 및 진동 특성)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • Pyrotechnic shock or pyroshock is characterized as a transient vibration phenomena which shows large acceleration and high frequency range up to 10kHz during the operation of separation devices where explosives are used. During the flight of a launch vehicle, pyro-shock is mainly generated at several events such as satellite separation, fairing separation and stage separation. In this paper, characteristics of pyroshock are introduced briefly, and PEEK washer shock absorber is applied for the reduction of pyroshock in the high frequency range. With some electronic devices, reduction characteristic of pyroshock using washer type shock absorber are studied. Random vibration tests are also performed for the verification of vibrational characteristics.

Analysis of Dynamic Responses of Urban Maglev Guideway (도시형 자기부상열차 가이드웨이의 동적거동특성 분석)

  • Hong, Yu-Na;Chung, Won-Seok;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • Maglev guideway is expected to be a new public transportation for future because of its environmental and special characteristics. Recently, Korean government initiated an urban maglev project to build a commercial line in Incheon International Airport by year 2012. For practical use of UTM02, it is essential not only to verify the performances of the vehicle but also to formulate the design rules of Maglev Guideway. In this paper, maglev guideway is analyzed by Finite Element Method and then obtained dynamic characteristics such as displacements, acceleration and impact factor.

Ethylene Production of Packaged Apples under Vibration Stress in Simulated Transportation Environment

  • Jung, Hyun-Mo;You, Young-Ok
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.97-101
    • /
    • 2017
  • Fruits are subjected to a variety of vibration stress during the transportation from a production area to markets. Vibration inputs are transmitted from the transporting vehicle through the packaged fruit. And the steady state vibration input may cause serious internal damage of fruit. Product quality of fruits declines by various factors while they are stored right after harvesting and among the substance in charge of post ripening action, ethylene ($C_2H_4$) biosynthesis increases fruits' respiration process after harvesting and decreases storage expectancy. Ethylene production of apples rapidly increases while storage duration becomes longer. This tendency is much clearer for the apples with vibration stress at input acceleration level. When there was no vibration stress, change in ethylene production level of apples are not very large during storage. Ethylene production rates inside the gas collecting container increased significantly ($p{\leq}0.05$) after 24 hours storage, particularly for apples with vibration stress ($0.7{\mu}l/kg{\cdot}hr$ (1st stack), $0.78{\mu}l/kg{\cdot}hr$ (2nd stack), $0.96{\mu}l/kg{\cdot}hr$ (3rd stack)); whereas less ethylene was produced in control apples ($0.18{\mu}l/kg{\cdot}hr$ during storage. Also ethylene production rates of apples according to the stack position were significantly different ($p{\leq}0.05$). The vibration stress clearly accelerated the degradation of apple quality during storage, resulting in increased ethylene production.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.