• Title/Summary/Keyword: Vehicle acceleration

검색결과 810건 처리시간 0.029초

도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략 (Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road)

  • 허슬기;정용환;이경수
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발 (Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

후륜 구동 차량의 급가속 시 구동계 진동 저감 (Driveline Vibration Reduction of FR(front engine rear wheel drive) Vehicle at Rapid Acceleration)

  • 김용대
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.592-599
    • /
    • 2014
  • A torsional vibration at driveline happens seriously at rapid vehicle acceleration. The torsional vibration at driveline can be reduced by optimization of joint angle and yoke phase angle of driveline. But, the joint angle of driveline is changed according to vehicle driving condition as acceleration, deceleration, forward and backward driving, so that excessive vibration is transmitted to vehicle body at specific driving condition. Especially under rapid acceleration condition, vibration transmitted to body could be maximized because excitation force at rapid acceleration is bigger than that at normal driving condition due to changed joint angle. The torsional vibration of driveline can be kept at low level by controlling suspension parameter to minimize rigid axle displacement as well as optimizing joint angles considering the vehicle acceleration condition.

자율주행자동차 가속/제동시스템의 실험적 모델링 (Experimental Modeling of Acceleration and Brake Systems for Autonomous Vehicle)

  • 이종언;김영철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.642-651
    • /
    • 2016
  • For the acceleration and brake systems of an autonomous vehicle, the dynamic models from acceleration (brake) pedal input to driving(braking) torque at the vehicle wheel are represented by a set of linear transfer functions in this paper. We present an experimental method that can identify these models using a single rectangular pulse response data. Various magnitude of inputs with different running speeds are applied to experimental tests. All the identified models are demonstrated by the measured data. Both acceleration and brake models have been also validated by comparing the velocity of a full vehicle model associated with the proposed models with the measured vehicle velocity.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석 (Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed)

  • 이혁;김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

가속도 계측을 이용한 타이어 선회 수막현상의 평가 (Evaluation of Tire Lateral Hydroplaning using Measured Vehicle Acceleration)

  • 강영규;황장순;오약전
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.623-625
    • /
    • 2013
  • Tire hydroplaning is one of the most important tire performances, especially for safety on wet road surface. And nowadays various methods such as FEM and FVM analysis are being applied to design and improve tire hydroplaning performance, along with on-vehicle test of tire hydroplaning. Conventional evaluation of tire hydroplaning has been done by comparing peak lateral acceleration and vehicle speed in time domain. But in this paper, frequency domain analysis of lateral acceleration when hydroplaning at high speed has been carried out to get the quantitative comparison between test tires. And it is concluded that the frequency spectrum analysis of lateral acceleration gives much better discrimination, as compared to the conventional time domain analysis of lateral acceleration and vehicle speed.

  • PDF

교차로에서 운전자별 온실가스 발생 경향 (Greenhouse Gas Emission Patterns at Intersections by Drivers)

  • 이윤석;유혜민;오흥운
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.147-154
    • /
    • 2013
  • PURPOSES: To analyze the specific factors of drivers behaviors that amount of cause the greenhouse gas emissions per vehicle. METHODS: Drivers behaviors at intersections are analyzed on the conditions of acceleration and deceleration. RESULTS : First, it is resulted greenhouse gas emissions per vehicle is produced more at intersections than at the main lines of highway. Second, it is resulted that the average speed, the average acceleration rate and the maximum speed are three major factors to produce greenhouse gas per vehicle in acceleration sections. Third, it is resulted that rapid deceleration 20m before entering intersections is the major factor to produce greenhouse gas per vehicle in deceleration sections. CONCLUSIONS: At intersections, sudden acceleration and deceleration is not good for greenhouse gas emissions. Thus, and the average speed, the average acceleration rate and the maximum speed are the chosen as factors to be controlled for drivers' behavior to reduce vehicles' greenhouse gas at intersections.

고속도로 졸음쉼터 진·출입 차량 주행속도 분석 및 적정 가·감속차로 길이 산정 연구 (Estimating Acceleration and Deceleration Lane Lengths by Analyzing Vehicle Speed Variation of Rest Areas for Drowsy Drivers)

  • 한다정;김응철
    • 한국ITS학회 논문지
    • /
    • 제17권6호
    • /
    • pp.54-66
    • /
    • 2018
  • 본 연구에서는 고속도로 졸음쉼터의 진 출입 차량 주행속도 조사를 통해 졸음쉼터 가 감속차로 길이, 설치위치의 종단경사 및 곡선반경이 주행차량에 미치는 영향을 분석하였다. 또한, 졸음쉼터 적정 가 감속차로 길이 산정을 위해, VISSM을 활용하여 진출입부 길이 별 시나리오를 구축하고, 가 감속차로를 이용하는 차량의 개별차량 주행궤적 자료를 추출하여 차량의 감속 및 가속도의 표준 편차를 산출하였다. 주행속도 조사 결과 졸음쉼터 설치위치의 곡선반경 및 종단경사에 따른 속도차이가 있는 것으로 나타났으며 무엇보다 가 감속차로 길이에 따른 차량 간의 속도차이가 크게 나타났다. 특히 가 감속차로 길이가 짧게 설치된 졸음쉼터의 경우 차량 간의 속도차이가 큰 것으로 조사되었으며 차량이 졸음쉼터 진입 시 충분히 감속을 하지 못하고 진입하거나 졸음쉼터 이용 후 본선 진입 시 충분히 가속을 하지 못한 채로 본선에 진입하는 것으로 조사되어 위험성이 높은 것으로 분석되었다. 가 감속차로 길이에 따른 시뮬레이션 분석결과 진입부의 경우 245m 이상의 감속차로 길이 확보가 필요할 것으로 분석되었으며, 가속차로의 경우 370m 이상으로 설치하였을 때 안전한 진출이 가능한 것으로 분석되었다.

우주비행체의 대기권 재진입 기준궤적 해석 (Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle)

  • 이대우;조겸래
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF