• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,003, Processing Time 0.034 seconds

Control Strategy Development of 4WD Vehicles based on Heuristic Approach and Dynamic Characteristic (경험적 접근법과 동역학적 특성에 기반한 4WD 차량의 제어 전략 개발)

  • Ham, Hyeongjin;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents a control strategy of 4 wheel drive (4WD) vehicles. Proposed control strategy has simple structure and can easily apply to various vehicles with low cost and time. It is consist of feedforward control for traction ability, fedback control for minimizing the wheel speed difference and yaw control for lateral stability. In addition, to integrate the traction and stability control, a blending function is applied. To evaluate the feasibility of the proposed control strategy, actual vehicle experiment is conducted after deciding the tuning parameter through the simulation. The simulation is accomplished by CarSim and Matlab/Simulink and the actual vehicle test is conducted using full size Sports Utility Vehicle (SUV) equipped rear wheel based solenoid type 4WD device.

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension (현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증)

  • Kim Sangsup;Jung Hongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

Evaluation of A Direct Yaw Moment Control Algorithm by Brake Hardware-In-The -Loop Simulation (브레이크HILS를 이용한 능동 요모멘트 제어 알고리즘의 평가)

  • 류제하;김호수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.172-179
    • /
    • 1999
  • This paper presents a simple but effective DYC algorithm which enhances vehicle lateral stability by using an anti=lock brake system (ABS). In the proposed algorithm, only the front outer wheel is controlled during cornering maneuver instead of controlling all four wheels because the wheel has the largest role in DYC and it is easy and simple to control the only one wheel. An ABS Hardware - In -The -Loop Simulation ( HILS) system that may be used to realistically test real vehicle dynamic behavior in a lab is used for evaluating the proposed DYC algorithm in severe situations where a vehicle is destabilized without DYC . The HILS results show that the proposed DYC algorithm has the potential of maintaining vehicle stability in some dangerous situations.

  • PDF

Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가)

  • Boo Kwang-Suck;Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle (이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선)

  • Sohn, Jeonghyun;Park, Seongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

Absolute Vehicle Speed Estimation using Neural Network Model (신경망 모델을 이용한 차량 절대속도 추정)

  • Oh, Kyeung-Heub;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

Modeling of an AGT Vehicle for Dynamic Response Analysis (경량전철의 동적응답 특성 평가를 위한 모델링)

  • 김기봉;김철우;송재필;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.218-225
    • /
    • 2000
  • Recently, right rail transit (L.R.T.) systems become influential as a new traffic system in urban area to solve heavy traffic problems. However, there are little research results about the dynamic interaction problems between the vehicle and structural system, even though some studies far those static problems have been carried out. Therefore, first of ail, the dynamic equations of an interaction between vehicle system and surface roughness of the vehicle path are derived before developing the dynamic equations of vehicle-structure-surface roughness system, in this study. As a vehicle model, an automated guide-way transit (A.G.T.) system is adopted. Parametric study shows that the dynamic wheel loads of the vehicle system has a tendency to increase with vehicle speeds and stiffness of suspension system. However, those dynamic wheel loads have tendencies to decrease in according to loads of the vehicle system.

  • PDF