• 제목/요약/키워드: Vehicle Wheel

검색결과 1,001건 처리시간 0.03초

ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구 (Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle)

  • 송정훈;부광석;이종일
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템 (Integrated Chassis Control System of a Rear In-wheel Motor Vehicle)

  • 김현동;최규재
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.

수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션 (A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF

기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구 (An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability)

  • 안국진;좌은혁;박관우;윤영식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.

전동차 차륜 마모에 따른 차륜/레일 기하학적 접촉 특성 변화 분석 (An Analysis on the Variation of the Wheel/Rail Contact Geometry with the Wheel Wear of EMU)

  • 허현무;박준혁;유원희;박태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.854-859
    • /
    • 2008
  • In a railway vehicle, contact between wheel and rail is a peculiar characteristic and variations of wheel and rail profile influence on the dynamic characteristics of railway vehicle. Thus the variations of the wheel and rail profile are very important in railway dynamics. Recently a research relating to active steering to improve the curving performance of vehicle is progressing actively at home and abroad. In this field, a pre-study for the wheel/rail contact geometry is needed and especially the variation of the wheel/rail contact geometry with wheel wear is the key design parameter to develop the controller of the active steering bogie. In this paper, we have experimentally studied to analyze the variation of the wheel/rail contact geometry with wheel wear as a pre-study to develop the active steering bogie for electric multiple unit (EMU). For this, we have made an experiment with EMU operating in curving area. We have measured the wear profiles of the wheel of the test vehicle and analyzed the wheel/rail contact geometry with a mileage of the test vehicle. In experiment with test vehicle, we have got the useful data to design the steering controller of the wheelset.

  • PDF

제 5바퀴속도와 비교한 차량절대속도 추정 알고리즘 (Estimation of the Absolute Vehicle Speed using the Fifth Wheel)

  • 황진권;송철기
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.58-65
    • /
    • 2003
  • Vehicle acceleration data from an accelerometer and wheel speed data from standard, 50-tooth antilock braking system wheel speed sensors are used to estimate the absolute longitudinal speed of a vehicle. We develop the four velocity estimation algorithms. And we compare experimental results with the Butterworth filtered speed from the fifth wheel and find that it is possible to estimate absolute longitudinal vehicle speed during a hard braking maneuver lasting three seconds.

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

차량의 동적 상호작용에 관한 이론연구 및 윤하중 실험 (An Analytical and Experimental Wheel Tracking Study on Dynamic Interaction of Vehicle)

  • 김낙석;박석순
    • 한국재난정보학회 논문집
    • /
    • 제2권1호
    • /
    • pp.39-52
    • /
    • 2006
  • In this paper, an analytical and experimental study was performed in order to determine the effects of interaction between vehicle and structure. Results presented in the paper show that analytical method including moving load effect can investigate the trend of structural response due to dynamic interaction between vehicle and structure. The wheel tracking machine fitted with 2-axle test vehicle can demonstrate more accurate dynamic interaction between vehicle and structure than the wheel tracking machine fitted without 2-axle test vehicle.

  • PDF

독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상 (Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving)

  • 장재호;김창준;김상호;강민성;백성훈;김영수;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

방음차륜에 의한 철도차량 소음진동저감 연구 (Study on the Effect of Elastic Wheel from the viewpoint of Noise and Vibration of railway Vehicle)

  • 유원희;김재철;문경호;서정원;팽정광
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.291-298
    • /
    • 1998
  • The object of this study is to investigate the effect of elastic wheel from the viewpoint of noise and vibration of railway vehicle. The vibration reduction was predicted from the FRF difference between elastic wheel and solid wheel by FEM simulation. The elastic wheel and solid wheel were compared in viewpoint of carbody vibration and car interior noise level. The effect of elastic wheel on the noise and vibration of subway vehicle was obtained. But, the application of elastic wheel must be reviewed in some aspect.

  • PDF