• Title/Summary/Keyword: Vehicle Tracking System

Search Result 507, Processing Time 0.028 seconds

Tracking of Multiple Vehicles Using Occlusion Segmentation Based on Spatio-Temporal Association

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.19-23
    • /
    • 2011
  • This paper proposes a segmentation method for overlapped vehicles based on analysis of the vehicle location and the spatiotemporal association information. This method can be used in an intelligent transport system. In the proposed method, occlusion is detected by analyzing the association information based on a vehicle's location in continuous images, and occlusion segmentation is carried out by using the vehicle information prior to occlusion. In addition, the size variations of the vehicle to which association tracking is applied can be anticipated by learning the variations according to the overlapped vehicles' movements. To assess the performance of the suggested method, image data collected from CCTVs recording traffic information is used, and average success rate of occlusion segmentation is 96.9%.

Backward Path Tracking Control of a Trailer Type Vehicle Using a RCGA Based Parameter Estimation (RCGA 기반의 파라미터 추정 기법을 이용한 트레일러형 차량의 후방경로 추종제어)

  • 위용욱;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • This paper presents a methodology on automation of a trailer type vehicle which consists of two parts: a tractor and a trailer. Backward moving and parking control is very important to automate this type of vehicle. It is difficult to control the motion such a trailer vehicle whose dynamics in non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a RCGA(real-coded genetic algorithm) is proposed and a backward path tracking control algorithm is then obtained. The simulation results verify the effectiveness of the proposed method.

  • PDF

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Leading Vehicle State Estimator for Adaptive Cruise Control and Vehicle Tracking

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.181-184
    • /
    • 1999
  • Leading vehicle states are useful and essential elements in adaptive cruise control (ACC) system, collision warning (CW) and collision avoidance (CA) system, and automated highway system (AHS). There are many approaches in ACC using Kalman filter. Mostly only distance to leading vehicle and velocity difference are estimated and used for the above systems. Applications in road vehicle in curved road need to obtain more informations such as yaw angle, steering angle which can be estimated using vision system. Since vision system is not robust to environment change, we used Kalman filter to estimate distance, velocity, yaw angle, and steering angle. Application to active tracking of target vehicle is shown.

  • PDF

Implementation of GCS and Antenna Tracking System for UAV (UAV용 GCS 및 안테나 추적 시스템 구현)

  • Park, Bumsoon;Choi, Ilgue;Kim, Jichul;Cheon, Dongik;Lee, Sangchul;Oh, Hwa-Suk;Kang, Minyoung
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.35-40
    • /
    • 2009
  • The first purpose of this study is to develop a GCS(Ground Control System) by using RF(Radio Frequency) wireless communication equipments for UAV(Unmanned Aerial Vehicle). The second goal is to develop an antenna tracking system operating automatically. UAV receives flight data from a RF wireless system. So the role of antenna tracking system is very important to keep good communication state between UAV and GCS. GCS can check flight data and display a aviation state of UAV in real-time. The flight data displayed in real-time by GCS include the latitude, longitude, altitude, speed and so on. Experiments that measure a communication range and reliability are needed to develop a RF wireless communication system.

  • PDF

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method (동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구)

  • Kwon, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.209-215
    • /
    • 2015
  • In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF

Real-time Lane Violation Detection System using Feature Tracking (특징점 추적을 이용한 실시간 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.201-212
    • /
    • 2011
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.

Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results

  • Ju, Chanyoung;Son, Hyoung Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.125-137
    • /
    • 2020
  • Tracking micro-sized insects is one of the challenges of protecting ecosystems and biodiversity. In this study, we propose an approach for the autonomous tracking of micro-sized flying insects, and develop an unmanned aerial vehicle (UAV)-based robotic system. The Kalman filter is applied to the received signal strength emitted from radio telemetry to estimate the position while reducing the measurement error and noise. The autonomous tracking strategy is a method in which the UAV rotates at one point to measure the signal strength and control its position in the strongest direction of the signal. We also design a system architecture comprising a tracking sensor system and a UAV system for micro-sized insects. The estimation and autonomous tracking of the target position by the proposed system are verified and evaluated through dynamic simulation. Therefore, in this study, we propose and validate a UAV-based tracking system for micro-sized flying insects, which has not been proposed in studies conducted thus far.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.