• Title/Summary/Keyword: Vehicle System Engineering

Search Result 4,682, Processing Time 0.036 seconds

Integrated Chassis Control System of a Rear In-wheel Motor Vehicle (후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템)

  • Kim, Hyundong;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.

Implementation of Inter-vehicle Communication System and Experiments of Longitudinal Vehicle Platoon Control via a Testbed

  • Kim, Tae-Min;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.711-716
    • /
    • 2003
  • This study considers the implementation issues of the inter-vehicle communication system for the vehicle platoon experiments via a testbed. The testbed, which consists of three scale vehicles and one RCS(remote control station), is developed as a tool for functions evaluation between simulation studies and full-sized vehicle researches in the previous study. The cooperative communication of the vehicle-to-vehicle or the vehicle-to-roadside plays a key role for keeping the relative spacing of vehicles small in a vehicle platoon. The static platoon control, where the number of vehicles remains constant, is sufficient for the information to be transmitted in the suitably fixed interval, while the dynamic platoon control such as merge or split requires more flexible network architecture for the dynamical coordination of the communication sequence. In this study, the wireless communication device and the reliable protocol of the flexible network architecture are implemented for our testbed, using the low-cost, ISM band transceiver and the 8-bit microcontroller.

  • PDF

System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research (심해 과학조사용 무인잠수정의 시스템 설계)

  • Lee, Pan-Mook;Lee, Choong-Moo;JEON, Bong-Hwan;Hong, Seok-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF

Wireless Power Transfer Technology in On-Line Electric Vehicle

  • Ahn, Seung-Young;Chun, Yang-Bae;Cho, Dong-Ho;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The On-line Electric Vehicle (OLEV) is an electric transport system in which the vehicle's power is transferred wirelessly from power lines underneath the surface of the road. Advantages of the OLEV include reducing battery size and cost to about 20 percent of that of conventional battery-powered electric vehicles, thereby minimizing the vehicle's weight and price, as well as the cost of charging the system. In this paper, we introduce a wireless power transfer mechanism to maximize the electrical performance of the power transfer system. Power transfer capacity, power transfer efficiency, and magnitude of leakage in the electromagnetic field (EMF) are analyzed, and the optimization methodology of the design parameters is discussed.

The Sludge Collection Scheduling and Vehicle Routing Strategies (하수처리시설의 슬러지 수거 일정계획 수립 및 수거차량 경로결정)

  • Cho, Joong-Mou;Noh, Eui-Soo;Kim, Min-Je;Heo, Eun-Jung;Choi, Gyung-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.105-114
    • /
    • 2007
  • In this paper, we propose sludge collection strategies which allocate each sewage store of village to sewage treatment plants and decide the schedule of sludge collection in order to collect sludge efficiently. The strategies aim to decrease transportation cost with deciding proposed vehicle routing and scheduling the sludge collection. When we decide route of vehicles, we consider the collection time in sewage store of village, distance between sewage store of villages and vehicle information as average velocity of vehicle, operation time of vehicle driver. We also develop the SCMS (Sludge Collection Management System) based on windows system with real data which is used in certain circumstance. And we experiment to figure out vehicle route and transportation cost throughout changing input data.

Evaluation of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Cho, S.Y.;Kim, Y.W.;Oh, S.H.;Park, C.B.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit (듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발)

  • Won, Chang-Yeon;Kang, Seon-Mo;Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

Dynamic analysis of wind-vehicle-bridge systems using mutually-affected aerodynamic parameters

  • Wang, Bin;Xu, You-Lin;Li, Yongle
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.191-211
    • /
    • 2015
  • Several frameworks for the dynamic analysis of wind-vehicle-bridge systems were presented in the past decade to study the safety or ride comfort of road vehicles as they pass through bridges under crosswinds. The wind loads on the vehicles were generally formed based on the aerodynamic parameters of the stationary vehicles on the ground, and the wind loads for the pure bridge decks without the effects of road vehicles. And very few studies were carried out to explore the dynamic effects of the aerodynamic interference between road vehicles and bridge decks, particularly for the moving road vehicles. In this study, the aerodynamic parameters for both the moving road vehicle and the deck considering the mutually-affected aerodynamic effects are formulized firstly. And the corresponding wind loads on the road vehicle-bridge system are obtained. Then a refined analytical framework of the WVB system incorporating the resultant wind loads, a driver model, and the road roughness in plane to fully consider the lateral motion of the road vehicle under crosswinds is proposed. It is shown that obvious lateral and yaw motions of the road vehicle occur. For the selected single road vehicle passing a long span bridge, slight effects are caused by the aerodynamic interference between the moving vehicle and deck on the dynamic responses of the system.

Vibration reduction for interaction response of a maglev vehicle running on guideway girders

  • Wang, Y.J.;Yau, J.D.;Shi, J.;Urushadze, S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • As a vehicle moves on multiple equal-span beams at constant speed, the running vehicle would be subjected to repetitive excitations from the beam vibrations under it. Once the exciting frequency caused by the vibrating beams coincides with any of the vehicle's frequencies, resonance would take place on the vehicle. A similar resonance phenomenon occurs on a beam subject to sequential moving loads with identical axle-intervals. To reduce both resonant phenomena of a vehicle moving on guideway girders, this study proposed an additional feedback controller based the condensed virtual dynamic absorber (C-VDA) scheme. This condensation scheme has the following advantages: (1) the feedback tuning gains required to adapt the control currents or voltages are directly obtained from the tuning forces of the VDA; (2) the condensed VDA scheme does not need additional DoFs of the absorber to control the vibration of the maglev-vehicle/guideway system. By decomposing the maglev vehicle-guideway coupling system into two sub-systems (the moving vehicle and the supporting girders), an incremental-iterative procedure associated with the Newmark method is presented to solve the two sets of sub-system equations. From the present studies, the proposed C-VDA scheme is a feasible approach to suppress the interaction response for a maglev vehicle in resonance moving on a series of guideway girders.

Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics (차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발)

  • Jeong, Jongryeol;Shin, Changwoo;Lim, Wonsik;Cha, Suk Won;Jang, Myeong Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.