• Title/Summary/Keyword: Vehicle System

Search Result 9,539, Processing Time 0.033 seconds

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Developing an In-vehicle Network Education System Based on CAN (CAN을 기본으로한 전기자동차용 차량 네트워크 교육용 시스템 개발)

  • Lee, Byoung-Soo;Park, Min-Kyu;Sung, Kum-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.54-63
    • /
    • 2011
  • An educational network system based on CAN protocol internal to a passenger ground vehicle has been developed. The developed network system has been applied to a commercial plug-in electrical vehicle and verified the educational applicability. To apply this in-vehicle network technology based on CAN, a suitable electric vehicle has been chosen and a CAN network structure has been designed, developed and manufactured. Since the commercial electric vehicle chosen as a test bed has its own proprietary electric network, we explain how the original electric network has been utilized and how the new network system has been designed. The developed network system on a real vehicle has been tested to show the applicability and the performance. Finally, the system has been applied at few classrooms to demonstrate how the in-vehicle network system works and to teach how to analyse the CAN signals. The developed system proven to be effective for educational purpose.

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

Vibration Mode of the Drivesystem Considered the Vehicle Body's Dynamic Characteristics (차체의 동특성을 고려한 구동시스템의 진동모드)

  • 유충준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.148-159
    • /
    • 2004
  • This paper discusses vibration mode of the drivesystem considered the vehicle body's dynamic characteristics to study the influence of the vehicle body's dynamic characteristics on the vibration mode of the engine mount system and the ride quality of a vehicle. The simulation model consists of the engine mount system, the powertrain and the rigid or elastic vehicle body. Variables used in this study are the stiffnesses of an engine mount system and the excitation forces. The Goals of the study are analyzing both the vibration transmitted to the vehicle body including the drivesystem and the influence of the vehicle body's dynamic characteristics on the engine mount system. The mode of drivesystems with a rigid and a elastic vehicle body was compared. From the result of the forced vibration analysis for the drivesystem with a elastic vehicle body, it is shown that the vehicle body's dynamic characteristics influence on the engine mount system reciprocally.

The User Motion Pattern Control System for The Simulated Vehicle

  • Kim, Tae-Wan;Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2012
  • The purpose of this paper is to design and implement the user motion pattern control system for the simulated vehicle. After analyzing the user motion patterns in the system, the patterns are used to control the moving direction of the simulated vehicle such as forward, backward, turn right, turn left etc. The patterns in the system around are sent to the simulated vehicle in real time. In order to execute the suggested user motion pattern control system, the Kinect is used for executing the system. The Kinect recognizes the specified user motion patterns and it transmits the data to the user motion pattern control system. There are nine kinds of the user motion patterns in the system for controlling the simulated vehicle. In addition to this, some sensors are used to detect the condition of the simulated vehicle. GPS is also used to estimate the current location of the simulated vehicle and to obtain the driving information.

Impedance Control for a Vehicle Platoon System (차량 집단 주행 시스템을 위한 임피던스 제어)

  • Yi, Soo-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.295-301
    • /
    • 2001
  • In this paper, an impedance control using a serial chain of spring-damper system is proposed for a vehicle platoon. For safety of the vehicle platoon, it is required to regulated the distance between each vehicle at a preassigned value even in case of vehicle model error, or moise in the measurement signal. Since the spring-damper system is physically stable and widely used to represent the interaction with the uncertain environments, it is appropriate to the longitudinal control of the vehicle platoon. By considering the nonholonomic characteristics of the vehicle motion, the lateral control and the longitudinal control of the vehicle paltoon are unified in the proposed algorithm. Computer simulation is carried out to verify the robustness against the uncertainties such as the vehicle model error and the measurement noise.

  • PDF

Design of Gateway for In-vehicle Sensor Network

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • The advanced information and communication technology gives vehicles another role of the third digital space, merging a physical space with a virtual space in a ubiquitous society. In the ubiquitous environment, the vehicle becomes a sensor node, which has a computing and communication capability in the digital space of wired and wireless network. An intelligent vehicle information system with a remote control and diagnosis is one of the future vehicle systems that we can expect in the ubiquitous environment. However, for the intelligent vehicle system, many issues such as vehicle mobility, in-vehicle communication, service platform and network convergence should be resolved. In this paper, an in-vehicle gateway is presented for an intelligent vehicle information system to make an access to heterogeneous networks. It gives an access to the server systems on the internet via CDMA-based hierarchical module architecture. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixec place, 707ms at rural area and 910ms at urban area.

  • PDF

Development of Vehicle Dynamics Control System (차량동역학제어시스템 개발)

  • 김동신;신현성;박병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.212-219
    • /
    • 1999
  • This paper describes the NANDO VDC (Vehicle Dynamics Control) system for the vehicle stability enhancement and consists of the control strategies , computer simulation and tests on the various road surface. This VDC system controls the dynamic vehicle motion in the emergency situation such as the final oversteer/understeer andallows the vehicle to follow the course as desired by the driver. The system is based on an active yaw control and its performance verified by the test is shown. Also the comparison between the MANDO VDC System and a competitor is carried out.

  • PDF

The State of the art and Future Research Subjects of Vehicle Fleet Scheduling System in Korea and Foreign country (국내외 배차계획시스템의 연구 현황 및 추후 과제)

  • 박영태;강승우
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2003.02a
    • /
    • pp.109-120
    • /
    • 2003
  • As the logistics industrial environment becomes more complex and its scale becomes increase, the vehicle fleet scheduling system has become recognized the necessity as a major strategy in the logistics field. The vehicle fleet scheduling system is computerized package that find the vehicle routes and schedules to accomplish the required service to customers using vehicles. This paper introduces the state of the art of vehicle fleet scheduling system in Korea and foreign country and the future research subject are presented.

  • PDF

Remote Control of an unmaned vehicle of shortage of hands using Internet (인터넷을 이용한 지능형 무인 차량의 원격제어)

  • 김승철;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.57-61
    • /
    • 2002
  • We design Collision Avoidance System using model vehicle. The purpose of this system(Collision Avoidance System) is to maintain continuously constant distance between a forward running vehicle and a following automatic guided vehicle(AGV). For this system, we design modeling of vehicle and observe this through simulation. By sing super sonic sensors to measure the distance between vehicles and controller using 80c196kc for changing velocity of motor, we design Collision Avoidance System as maintaining continuously constant distance between vehicles.

  • PDF