• 제목/요약/키워드: Vehicle Suspension

검색결과 704건 처리시간 0.03초

Active Control Method of Automotive Suspension System

  • Seonghark Jeong;Kim, Jungha;Donghee Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.43.4-43
    • /
    • 2002
  • $\textbullet$ Introdution $\textbullet$ Robotic Suspension $\textbullet$ Vehicle Dynamics $\textbullet$ Result $\textbullet$ Conclusion

  • PDF

차량 동력학 해석을 위한 조향장치 모델링 (Steering Model for Vehicle Dynamic Analysis)

  • 탁태오;김금철;윤중락
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.214-221
    • /
    • 1999
  • In this research, a power-assisted steering system is modeled as a part of a full vehicle dynamic model. The dynamic model of the steering system incorporates hydraulic and dynamic relations between major parts of a steering system, such as steering column, control valve, rack and pinion gear. Through an experimental setup of the steering system, the steering system model is validated. The steering model is included in a full vehicle dynamic model of a car, where kinematic relations between steering and suspension system are defined, and various simulations are performed to evaluate the performance of steering system in conjunction with overall dynamic performance of the vehicle.

  • PDF

궤도 차량 로드 휠 강도평가와 잔류 변형에 관한 연구 (A Study for Residual Deformation and Strength Evaluation on Road Wheel of a Tracked Vehicle)

  • 신국식;강성기
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.47-52
    • /
    • 2011
  • A tracked vehicle is dependent on performance of power pack and suspension systems. Especially, road wheels which are components of suspension system contribute distributing vehicle weight on soil and preventing from misguiding tracks. In this study, the maximum force was calculated that a tracked vehicle is driven on the worst condition. And then, FE analyses were carried out to evaluate strength road wheel under maximum force condition. In standard of quality evaluation for road wheel, FE simulations and experimental works were carried out under thirty degree slant load of normal direction of shaft. And then, A relationship residual deformation for slant load was investigated. The result of this research is applicable to evaluate strength and to make use of basis data.

가변댐퍼식 궤도차량용 현수장치의 성능에 관한 연구 (A study on the performance of variable damper type suspension for tracked vehicle)

  • 이재순;김승무
    • 오토저널
    • /
    • 제3권2호
    • /
    • pp.34-42
    • /
    • 1981
  • The feasibility of using fluidic components for improving certain performance characteristics of the suspension systems for tracked vehicle is investigated. This study describes three variable damping systems for which the damping coefficients are function of relative velocity and absolute a of the vehicle body. Through the comparison analysis between constant damping coefficient damper and each of variable dampers. the followings were found: (1)Fluidic Diode Damper gave less accelerations, (2)Both Fluidic Diode Damper and Relative Velocity Damper gave the less time for which the wheel is off the ground, (3) At low vehicle velocity Fluidic Diode Damper gave low energy dissipation rate, while at high vehicle velocity Turbulence Accelerometer Damper gave low energy dissipation rate.

  • PDF

ER 현수장치를 갖는 궤도차량의 $H_{\infty}$ 제어 ($H_{\infty}$ Control of a Tracked Vehicle with ER Suspension Units)

  • 한상수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.251-256
    • /
    • 2000
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double-rod type ERSU(electro-rheological suspension unit). A 16 DOF(degree-of-freedom) model for the tracked vehicle is established by Lagrangian method. After showing the spring and damping characteristics of the proposed ERSU, equivalent 2 DOF 1/12 tracked vehicle model is then formulated by regarding the spring and viscous damping coefficients under the static state as constant values. A robust LSDP(loop-shaping design procedure) $H_{\infty}$ controller compensating spring and damping parameter variations is then designed in order to suppress unwanted vibration of the vehicle. The control responses such as vertical and pitch acceleration are presented in time domain.

  • PDF

상전도 흡인식 자기부상열차의 주행 안정성 해석 (Stability Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System)

  • 한형석;김숙희;임봉혁;허영철
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.118-126
    • /
    • 2008
  • The levitation stability of a Maglev vehicle utilizing electromagnetic suspension is primarily influenced by the deformation, roughness, and vibration of the guideway. Optimum design for both the vehicle and the guideway is desirable in order to reduce guideway construction cost, while meeting requirements for stability and ride quality. This paper presents an analysis of the levitation stability of the UTM-01, an urban Maglev vehicle, using a numerical simulation. The ODYN/Maglev, a dynamics analysis program, is used to simulate dynamics to evaluate the stability. A running test of the UTM-01 is also carried out to verify the results of the simulation. Using the simulation results, the levitation stability of the UTM-01 can be numerically analyzed at a variety of vehicle speeds.

반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어 (Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System)

  • 김대원;배준영;신중호
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

상용차 조향계의 진동해석 (Vibration Analysis of Steering System in Commercial Vehicles)

  • 조병관;류길하;강홍대
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.86-94
    • /
    • 1995
  • For a driving vehicle, a self-excited vibration of a pair of steerable wheels about their steering axis accompanied by tramp is called shimmy. Shimmy is caused by the coupling effects of the complicated actions of wheel and tire and the tramp motion of front wheel axle. Because front axle is no longer used on passenger cars shimmy occurring is not considerable. But in commercial vehicles using front wheel axle suspension system shimmy should be considered in design process. In this paper, the model closed to a practical vehicle was developed to analyze the shimmy of a commercial vehicle, and the effects of various design parameters to shimmy were observed by dynamic simulation with multibody dynamics program, DADS. The validity of developed model and analysis results were verified by practical vehicle experiments.

  • PDF

축소형 차량의 횡진동 해석 (Lateral Vibration Analysis of a Small Scale Railway Vehicle Model)

  • 이승일;손건호;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF