• 제목/요약/키워드: Vehicle Steering

검색결과 671건 처리시간 0.033초

전기구동 특수차량의 제동 조향 성능 해석 (Brake Steering Analysis of Electric-driven Special-purpose Vehicles)

  • 박건선;김준영;허건수;장경영;오재응
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.29-38
    • /
    • 1997
  • In this paper, brake steering performance of electric-driven special-purpose vehicles is investigated. A 14 DOF model is developed considering nonlinear character- istics of the suspension and tire. Based on the model, cornering performance is analyzed for brake steering, acceleration steering and pivoting, respectively. Simulation results are obtained based on the developed SIMULINK module. This analysis about the non steady state cornering performance is particularly important for armored vehicles because the projected route of the vehicle at emergency should be predicted accuracy.

  • PDF

대차 조향 특성 시험을 위한 축소 트랙 개발 (Development of the Scale Track to Test Bogie Steering Performance)

  • 허현무;박준혁;유원희;박태원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig. But testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. And it is desirable to test on the full scale test rig, but it caused many problems relating to test costs, test time. To overcome these problems, the small scale test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied the scale track to test the bogie steering performance. For this, we designed the 1/5 scale test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the scale curve track through the testing using 1/5 scale bogie.

  • PDF

승용차용 스티어링시스템 지지 T-형구조물의 최적설계 (Optimization of T-Structure Supporting Steering System Using μGA)

  • 이종수;김성철
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.809-814
    • /
    • 2005
  • The goal of this paper is to minimize the weight of the T-structure supporting steering system in reducing the vibration level on steering wheel which could be amplified by the resonance. Presently, requirements for reducing noise, vibration and harshness (NVH) in automotive area are more stringent than ever. One of them is the vibration of steering system which occurs sometimes at high speeds or when the engine is idling. Besides, the reduction of weight is also one of requirements for improvement of vehicle performance. This paper used the micro genetic algorithm as an optimization method to satisfy above two requirements. The whole T-structure assembly including steering column was used for frequency analysis.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on Driving Trajectory of AGV for Container Transport)

  • 이지용;김민주;이승수;김중완;전언찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1076-1081
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

  • PDF

무인자동안내방적 경량전철 시스템의 동특성에 관한 연구 (Dynamic Characteristics of Automated Guideway Transit (AGT) Vehicles)

  • 송창민;이우식
    • 한국철도학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper, the dynamics and stability of the automated guideway transit (AGT) vehicles with rubber tires are investigated. Two types of AGT systems are considered: the bogie-type and steering-type systems. The critical speeds for the dynamic instability of lateral and yawing motions are investigated by use of the Routh-Hurwitz's stability criterion. It is shown that the bogie-type AGT vehicles are likely to be stable within the range of practical operating speed, whereas it is not true for the steering-type AGT vehicles. It is also shown that the control performance of steering-type AGT vehicles can be improved by choosing proper steering gains of the closed-loop steering control system.

  • PDF

Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구 (A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion)

  • 김병우;허진;조현덕;이영석
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.

듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발 (Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit)

  • 원창연;강선모;남윤의
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

무인운전차량의 자율주행을 위한 경로점 기반 경로계획 (Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints)

  • 송광열;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

조향 함수를 고려한 UCT/AGV 설계 및 구현 (UCT/AGV Design and Implementation using steering function in automizing port system)

  • 윤경식;이동훈;강진구;이권순;이장명
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 춘계학술대회논문집
    • /
    • pp.47-56
    • /
    • 2000
  • In this study, as the preliminary step for developing an unmanned vehicle to deliver a container-box, we designed and implemented Automatic Guided Vehicle(AGV) Simulator for the purpose of Port Facilities Automation. It is preferable to research the intelligent AGV for delivery all day long. For complementing AGV simulator driving, we used multiple-sensor systems with vision, ultrasonic, IR and adapted the high-speed wireless LAN that satisfies the IEEE 802.11 Standard for bi-directional communication between main processor in AGV and Host computer. Here, we mounted on bottom frame in AGV Pentium-III processor, which combine and compute the information from each sensor system and control the AGV driving, and used the 80C196KC micro-controller to control the actuating and steering motors.

  • PDF

차량 횡방향 안정성 향상을 위한 통합섀시 제어 (Unified Chassis Control for Improvement of Vehicle Lateral Stability)

  • 조완기;이경수;윤장열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF