• 제목/요약/키워드: Vehicle Steering

검색결과 671건 처리시간 0.021초

전기자동차용 전동기 구동시스템의 개발 (A Novel Motor Drive System for Electric Vehicle)

  • 최형묵;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.151-153
    • /
    • 1993
  • This paper proposes a novel motor drive system for the electric vehicle. In this paper, four-wheel-direct-drive type electric vehicle system is designed and the theoretical and experimental analysis of the system is investigated. The concept of steering not with steering the wheels but with the difference of the motor torque fives the flexibility of the vehicle design and, allows the omission of the differential gear, transmission gear, and drive axles. Thus the proposed system gives the space between wheels and improves the driver's steering performance.

  • PDF

6x6 인휠로봇차량의 회전차조향거동에 관한 연구 (A Study on the Behavior of Skid Sleeving on Unmanned Wheeled Vehicle with Suspension System)

  • 조성원;한창수;이정엽
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.79-85
    • /
    • 2007
  • The skid-steering method that applied a number of mobile robot currently is very effective in narrow area. But it contains several problems of its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. From this thesis we want to suggest suitable structure of $6{\times}6$ skid steering wheeled vehicle and method of driving by analyzing the behavior of $6{\times}6$ skid-steered wheeled vehicle by engineering analytical method

HILS를 이용한 전차륜 조향 시스템 장착 차량의 성능 평가 (The Evaluation of Dynamic Performance of Vehicle adopted All Steering System using Hardware In-the Loop Simulation)

  • 이수호;박태원;김기정;정기현;최경희;문경호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1717-1725
    • /
    • 2008
  • In this paper, the HILS system is proposed for the AWS ECU of the bi-modal tram. Using the HILS of the AWS ECU, the behavior of the vehicle can be predicted and the reliability of the AWS system also can be verified. The hardware part of the HILS system includes the ECUs, hydraulic systems, steering linkages and sensors of the bi-modal tram. The software part of the HILS system contains the virtual vehicle model and sensor emulation. Driver input conditions, such as vehicle velocity and front steering angle, are provided to the ECUs by the software. The driving simulation of the bi-modal tram is carried out by the HILS. Also, the reliability of the AWS system, including the ECUs and hydraulic systems, is verified.

  • PDF

다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석 (Stability and frequency response analysis of multipurpose vehicle using linear vehicle model)

  • 김병기;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

MR댐퍼를 장착한 SUV의 조향으로 인한 롤 특성 평가 (Roll Characteristics Evaluation due to the Steering of a SUV with MR Dampers)

  • 강인필;백운경
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2009
  • This study is about roll characteristics evaluation to show the advantage of using MR(magneto-rheological) dampers for steering of a SUV(sports utility vehicle). Roll characteristics is very important to observe the roll-propensity of the SUV. ADAMS/Car program was used to simulate the basic steering motion, using 63 D.O.F. vehicle model. Sky-Hook and Ground-Hook control algorithms were used as a semi-active suspension system controller. The roll characteristics from the steering motion were compared between the simulation results from the semi-active suspension system and the passive suspension system.

  • PDF

조향 기구가 없는 4륜 전기 구동 차량의 지능형 조향 제어 시스템의 설계 (Design of an intelligent steering control system for four-wheel electric vehicles without steering mechanism)

  • 변상진;박명관;서일홍
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.12-24
    • /
    • 1997
  • An intelligent steering control system is designed for the steering control of a 4 wheel drive (4WD) electric vehicles without steering mechanism, where the vehicle is assumed to have 3 degree of freedom and input-output feedback linearization is employed. Especially, a fuzzy-rule-based side force estimator is suggested to avoid uncertain highlynonlinearexpression sof relations between side forces and their factors. Also, aneural-network-based predictive compensator is additionally utilized for the vehicle model to be correctly controlled with unstructured uncertainties. The proposed overall control system is numerically shown to be robust against drastic change of the external environments.

  • PDF

비행체의 자세와 GPS 재머의 상대적인 배치상태를 고려한 4소자 및 7소자 항재밍장치에 대한 성능분석 (4 and 7 Element GPS Anti-jamming Algorithm Performance Analysis Considering the Relative Arrangement of the Multiple Jammers)

  • 최재건
    • 한국항행학회논문지
    • /
    • 제20권3호
    • /
    • pp.218-225
    • /
    • 2016
  • 일반적으로 알려진 GPS 항재밍 기술로는 재밍 방향에 대한 감쇄효과를 얻는 널 스티어링 (null steering)과 위성방향으로의 추가 합성이득을 얻는 빔 스티어링 (beam steering) 방식이 있다. 이 신호처리 알고리즘을 소개하는 문헌에 의하면, 수학 공리에 따라 동시처리 가능한 재밍의 개수는 배열안테나 소자의 개수 N 에서 기준 안테나 1개를 제외한 N-1 개에 대해서만 유효하다는 표현을 하지만, 재머 배치나 비행체의 자세 그리고 둘 간의 상대적 배치 등 실질적인 운용 조건을 고려한 알고리즘 특성에 대한 분석은 알려져 있지 않다. 이에 본 논문에서는 4소자 및 7소자 표준 배열안테나가 적용된 항재밍 시스템을 모델링하여 비행체의 자세(수평, 수직)와 재머 배치, 그리고 안테나 소자 수를 고려한 두 항재밍 알고리즘(PM, LCMV)에 대한 성능 분석을 하였다. 결과적으로, 동일한 JSR 환경임에도 불구하고, 위성 신호와 재밍 신호 간 입사각이 상대적으로 큰 비행체의 수직 자세의 경우 수평 자세보다 약 10 dB 이상의 이득이 있음을 시뮬레이션을 통해 제시 하였다.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

무인자동차의 경로점 주행 시 장애물 회피를 위한 경로생성 알고리즘 (A Path Generation Algorithm for Obstacle Avoidance in Waypoint Navigation of Unmanned Ground Vehicle)

  • 임준혁;유승환;지규인;이달호
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.843-850
    • /
    • 2011
  • In this paper, an effective path generation algorithm for obstacle avoidance producing small amount of steering action as possible is proposed. The proposed path generation algorithm can reduce unnecessary steering because of the small lateral changes in generated waypoints when UGV (Unmanned Ground Vehicle) encounters obstacles during its waypoint navigation. To verify this, the proposed algorithm and $A^*$ algorithm are analyzed through the simulation. The proposed algorithm shows good performance in terms of lateral changes in the generated waypoint, steering changes of the vehicle while driving and execution speed of the algorithm. Especially, due to the fast execution speed of the algorithm, the obstacles that encounter suddenly in front of the vehicle within short range can be avoided. This algorithm consider the waypoint navigation only. Therefore, in certain situations, the algorithm may generate the wrong path. In this case, a general path generation algorithm like $A^*$ is used instead. However, these special cases happen very rare during the vehicle waypoint navigation, so the proposed algorithm can be applied to most of the waypoint navigation for the unmanned ground vehicle.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF