• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.022 seconds

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

Active Handling Control of the Differential Brake System Using Fuzzy Controller (퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어)

  • 윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

Steering Characteristics of an Autonomous Tractor with Variable Distances to the Waypoint

  • Kim, Sang Cheol;Hong, Yeong Gi;Kim, Kook Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Autonomous agricultural machines that are operated in small-scale farmland frequently experience turning and changes in direction. Thus, unlike when they are operated in large-scale farmland, the steering control systems need to be controlled precisely so that travel errors can be minimized. This study aims to develop a control algorithm for improving the path tracking performance of a steering system by analyzing the effect of the setting of the waypoint, which serves as the reference point for steering when an autonomous agricultural machine moves along a path or a coordinate, on control errors. A simulation was performed by modeling a 26-hp tractor steering system and by applying the equations of motion of a tractor, with the use of a computer. Path tracking errors could be reduced using an algorithm which sets the waypoint for steering on a travel path depending on the radius of curvature of the path and which then controls the speed and steering angle of the vehicle, rather than by changing the steering speed or steering ratio which are dependent on mechanical performance.

A Method for Driver Recognition and Steering Wheel Turning Direction Estimation Using Smartwatches (스마트워치를 이용한 자동차운전자 구분 및 핸들의 회전 방향 인지 기법)

  • Huh, Joon;Choi, Jaehyuk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.844-851
    • /
    • 2019
  • As wearable technology is becoming more common and a part of our lives, there have been many efforts to offer various smart services with wearable devices, such as motion recognition, safety of driving, and so on. In this paper, we present a method that exploits the 9-axis inertial sensors embedded in a smartwatch to identify whether the user is a vehicle driver or not and to estimate the steering wheel turning direction in the vehicle. The system consists of three components: (i) position recognition, (ii) driver recognition, and (iii) steering-wheel turning detection components. We have developed a prototype system for detecting user's motion with Arduino boards and IMU sensors. Our experiments show high accuracy in recognizing the driver and in estimating the wheel rotation angle. The average experimental error was $11.77^{\circ}$ which is small enough to perceiver the turning direction of steering-wheel.

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.

Analysis Model Development for Designing of Hydraulic Power Steering System (유압식 동력조향 장치 설계를 위한 해석 모델 개발)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.158-165
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The agreement between simulation and experimental results shows the validity of the simulation model. The parameter sensitivity analysis such as valve opening area, torsional stiffness for system design are carried out by the analysis and experimental method.

An Experimental Study on Pulsation Noise Reduction of Power Steering Oil Pump (Power Steering Oil Pump의 맥동소음 저감에 관한 실험적 연구)

  • 안세진;김명환;박진형;정의봉;유승근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.395-400
    • /
    • 2003
  • Power steering oil pump is generally used to support the power to steering system of most kinds of vehicle. The noise caused by power steering ell pump make passenger to be uncomfortable, because its frequency is higher than that is produced by engine. In this paper, the field test of real car was carried out to analyze the phenomenon of the pump noise, and the lab test was also performed to survey the dynamic characteristics of pump assembly. The results of the series of tests show that frequency range of 600-800㎐ should be dealt with to reduce the pump noise. After four cases of design changes were carried out to actually reduce the noise and tested in condition of partial assembly. Some improvement can be gotten from a certain design change.

  • PDF

Study on the Design of Streeing Wheels for Maximmum Protection of Drivers during Crash (충돌안정성을 고려한 승용차용 조향핸들의 최적설계에 관한 연구)

  • 이윤형;김권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.130-140
    • /
    • 1999
  • During crash of a vehicle, most of the kinetic energy of the driver is absorbed by the steering system. The deformation characteristics of the steering system has significant effects on the injury of the driver. A part of the energy is absorbed by the steering wheel and another part by the collapsable steering column. It is believed that strength distribution between the wheel and the column has an important effect on the injury of the driver. A design criterion is suggested for steering wheels for maximum protection of drivers. Tagushi method is used to analyse the effects of design parameters.

  • PDF