• Title/Summary/Keyword: Vehicle Simulator

Search Result 574, Processing Time 0.023 seconds

Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model (20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발)

  • 김형내;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

Development of a Real-Time Vehicle Dynamic Model for a Tracked Vehicle Driving Simulator

  • Lee, Ji-Young;Lee, Woon-Sung;Lee, Ji-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.2-115
    • /
    • 2002
  • A real-time vehicle simulation system is a key element of a driving simulator because accurate prediction of vehicle motion with respect to driver input is required to generate realistic visual, motion, sound and proprioceptive cues. In order to predict vehicle motion caused by various driving actions of the driver on board the simulator, the vehicle model should consist of complete subsystems. On this paper, a tracked vehicle dynamic model with high efficiency and effectiveness is introduced that has been implemented on a training driving simulator. The multi-body vehicle model is based on recursive formulation and has been automatically generated from a symbolic computation package develop...

  • PDF

Evaluation of Vehicle Stability Control System Using Driving Simulator (주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증)

  • 정태영;이건복;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

Launch Vehicle Telemetry MUX Test by using the Spacecraft Simulator

  • Won, Young-Jin;Lee, Jin-Ho;Yun, Seok-Teak;Kim, Jin-Hee;Lee, Sang-Ryool
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.46.3-46.3
    • /
    • 2009
  • The SAR (Synthetic Aperture Radar) satellite has the advantage of implementing the imaging mission even though it is night time, cloudy weather, and all weather conditions, which is different from the satellite with the optical payload. This is the reason why the SAR satellite comes into the spotlight in the observation satellite field. The Korea Aerospace Research Institute (KARI) has been developing the first Korean SAR satellite and is currently integrating and testing the Flight Model. For the launch vehicle service, KARI finalized the selection of the launch vehicle service provider and finished Critical Design Review (CDR) of the interface between the bus and the launch vehicle. KARI and launch vehicle service provider also finished the test of the telemetry interface between the bus and the launch vehicle. The test of the telemetry interface has the purpose of checking the interface of the telemetry which is the SOH(State-of-Health) of the satellite in an early launch stage. For this test, KARI has finished the development of the spacecraft simulator which is composed of the bus simulator to generate the analog telemetry and the launch vehicle simulator to gather the telemetry. In this research, the result of the hardware implementation and the software implementation for the spacecraft simulator were described. Finally the results of the launch vehicle telemetry MUX test which were performed at the launch vehicle provider's design office by using the spacecraft simulator were summarized. It is expected that this simulator will be used in the next test after the manufacture of the launch vehicle.

  • PDF

Preliminary design of a scaled railway vehicle simulator (상사기법을 이용한 차량시뮬레이터 기초 설계)

  • Kim, Hong-Chan;Kim, Jeung-Tae;Lee, Hi-Sung;Oh, Se-Been
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.951-956
    • /
    • 2008
  • The study is to develop a foundation design for a railway vehicle simulator using a scaled model. Although a scaled simulator is limited to manipulate the dynamics of a full-size railway vehicle, it has been known to have an advantage, since a scaled model could provide the fundamental dynamic behavior within a limited space of a laboratory facility and with a low operation cost while an experiment is conducted. This study is to propose a design strategy for a simulator so that a small scaled roller rig could be fabricated in a laboratory based on the design philosophy. The data obtained from the scale model is also experimentally investigated in conjunction with appropriate non-dimensional analysis so that the output results should be interpreted to the railway vehicle.

  • PDF

Preliminary Design and Development Framework of Railway Vehicle Simulator for Engineering Evaluation Analysis

  • Kim, Hong-Chan;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2011
  • The purpose of the present study is to develop conceptual design of a railway vehicle simulator based on a scaled model. Although the scaled simulator is limited in its ability to manipulate the full dynamics of a full-size railway vehicle, it has been known to have an advantage in that it could provide means of testing the fundamental dynamic behavior within a limited laboratory space and at low operation cost. The present study proposes a design strategy for a simulator so that a small scaled roller rig could be fabricated and operated in laboratory setting based on the design philosophy. The data obtained from experimental testing using a scale model can be used to verify and interpret the dynamic performance of full-scale railway vehicle by applying appropriate non-dimensional analysis.

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

A Study on Real Simulator of Running Power Train for Construction Vehicle (건설차량 주행용 동력 전달계의 실시간 시뮬레이터에 관한 연구)

  • 이일영;김진원;윤소남;양경욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.90-105
    • /
    • 1996
  • A real tine simulator of running power train for a construction vehicle was developed. The simulator mainly consists of following two parts; (1) running power train part and (2) running load generation part. An optimal servo control algorithm was adopted for designing the multi-variable digital control system of the simulator. By experiments investigating response characteristics under step-wise variation or pre-determined scenario of target vehicle velocity and target load torque, it was verified that the simulator could reproduce physical situations at and actual vehicle with excellent similarity.

  • PDF

A Study on Improving the Reality of the Vehicle Simulator Based on the Virtual Reality (가상현실 기반의 차량 시뮬레이터의 현실감 향상에 관한 연구)

  • Choi Young-Il;Kwon Seong-Jin;Jang Suk;Kim Kyu-Hee;Cho Ki-Yong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1116-1124
    • /
    • 2004
  • In these days, a vehicle simulator has been developed with a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with natural interaction, sufficient immersion and realistic images. In addition, a VR system must present a driver with the realistic driving situation. To achieve these, it is important to obtain a fast and uniform rendering performance regardless of the complexity of virtual worlds. In this paper, the factors to improve the reality for the VR based vehicle simulator have been investigated. For the purpose, the modeling and the rendering methods which offer an improved performance for complex VR applications as the 3D road model have been implemented and verified. Then, we experiment on the influence of graphic and sound factors to the driver, and analyze each result for improving the reality such as the driver's viewport, the form of texture, the lateral distance of the side object, and the sound effect. These factors are evaluated on the driving system which is constructed for qualitative analysis. The research results could be used for improving the reality of the VR based vehicle simulator.

Development of a Washout Algorithm for a Vehicle Driving Simulator Using New Tilt Coordination and Return Mode

  • You Ki Sung;Lee Min Cheol;Kang Eugene;Yoo Wan Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.272-282
    • /
    • 2005
  • A vehicle driving simulator is a virtual reality device which makes a man feel as if he drove an actual vehicle. Unlike actual vehicles, the simulator has limited kinematical workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model. In order to overcome these problems, a washout algorithm which controls the workspace of the simulator within the kinematical limitation is needed. However, a classical washout algorithm contains several problems such as generation of wrong sensation of motions by filters in tilt coordination, requirement of trial and error method in selecting the proper cut-off frequencies and difficulty in returning the simulator to its origin using only high pass filters. This paper proposes a washout algorithm with new tilt coordination method which gives more accurate sensations to drivers. To reduce the time in returning the simulator to its origin, an algorithm that applies selectively onset mode from high pass filters and return mode from error functions is proposed. As a result of this study, the results of the proposed algorithm are compared with the results of classical washout algorithm through the human perception models. Also, the performance of the suggested algorithm is evaluated by using human perception and sensibility of some drivers through experiments.