• Title/Summary/Keyword: Vehicle Remote Control

Search Result 146, Processing Time 0.028 seconds

Design of Advanced Tele-operated Control System for Unmanned Vehicle

  • Park, Jae-Hong;Son, Young-Jin;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.915-919
    • /
    • 2005
  • It is materialized an unmanned vehicle system as a part of Intelligent Transportation System (ITS) which is a fundamental constituent for unmanned vehicle. Remote control system, monitoring system and remote operating system which are consisted of unmanned vehicle system. Network program by TCP/IP socket, and real-time control & operating controlled by servo-motors from a remote place, those are used to verify safety and stability of the unmanned vehicle system in this research. This unmanned vehicle is divided into two major sections which are an unmanned vehicle part and control station part. The server PC is installed on the unmanned vehicle and a client PC is installed at a remote place, which can control the u manned vehicle. In this research work, main theme is that we experimented and tested to check the speed and utilization of the wireless LAN communication.

  • PDF

Remote Emergency Stop System to Improve Safety of Automated Driving Vehicle (자동주행차량의 안전성 향상을 위한 원격비상정지시스템)

  • Ryoo, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • In this paper, a remote emergency stop system to improve the safety of an automated driving vehicle is proposed. One of the most serious problems of the previous wireless remote emergency system is that it does not work when the wireless channel is damaged in case of an emergency because it is composed of a single communication channel. Therefore, the proposed remote emergency stop system composed of a portable wireless remote system and a stationary wireless remote system is designed and the remote emergency stop system for automated driving vehicles is developed. By applying it to an automated driving vehicle to check it's performance, the wireless remote system is tested. Emergency stops using the portable wireless remote system is tested when the stationary wireless remote system is disconnected. Also, emergency stops using the stationary wireless remote system are tested when the portable wireless remote system is disconnected. The results of the emergency stop test show a satisfactory performance.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

Optimal Communication Channel Scheduling for Remote Control of Lead Vehicle in a Platoon (군집 선행차량의 원격제어를 위한 통신 채널의 최적 스케줄링)

  • 황태현;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.969-976
    • /
    • 2003
  • A remote control strategy for vehicles in Intelligent Vehicle Highway System (IVHS) is considered. An optimal scheduling of a limited communication channel is proposed for lead vehicle control in a platoon. The optimal scheduling problem is to find the optimal communication sequence that minimizes the cost obtained inherently by an optimal control without the communication constraint. In this paper, the PID control law which guarantees the string stability is used for the lead vehicle control. The fact that the PID control law is equivalent to the approximately linear quadratic tracker allows to obtain the performance measure to find an optimal sequence. Simulations are conducted with five maneuvering platoons to evaluate the optimality of the obtained sequence.

A Design and Implementation of the Remote Control Black Box System of Vehicle Using the Smart Phone

  • Song, Jong-Geun;Jang, Won-Tae;Kim, Tae-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • This paper suggests the vehicle remote control on the basis of Smart Phone. In general, most smart phone is mounted with G-sensor to control the motion. G-sensor is able to control several directions and movements of velocity along with X, Y, and Z axis. To access remote location and data system, we can also utilize Wi-Fi communication as well as bluetooth communication. In this study, we propose the scheme that is the car management application by remote control via real-time monitoring on mobile device for user convenience.

Design and Evaluation of Telematics User Interface for Ubiquitous Vehicle

  • Hong, Won-Kee;Kim, Tae-Hwan;Ko, Jaepil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2014
  • In the ubiquitous computing environment, a ubiquitous vehicle will be a communication node in the vehicular network as well as the means of ground transportation. It will make humans and vehicles seamlessly and remotely connected. Especially, one of the prominent services in the ubiquitous vehicle is the vehicle remote operation. However, mutual-collaboration with the in-vehicle communication network, the vehicle-to-vehicle communication network and the vehicle-to-roadside communication network is required to provide vehicle remote operation services. In this paper, an Internet-based human-vehicle interfaces and a network architecture is presented to provide remote vehicle control and diagnosis services. The performance of the proposed system is evaluated through a design and implementation in terms of the round trip time taken to get a vehicle remote operation service.

Vehicle Platooning Remote Control via State Estimation in a Communication Network (통신 네트워크에서 상태 추정에 의한 군집병합의 원격제어)

  • 황태현;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.192-192
    • /
    • 2000
  • In this paper, a platoon merging is considered as a remote-controlled system with the state represented by a stochastic process. In this system, it becomes to encounter situations where a single decision maker controls a large number of subsystems, and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike classical estimation problem in which the observation is a continuous process corrupted by additive noise, there is a constraint that the observation must be coded and transmitted over a digital communication channel with finite capaci쇼. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. Using the coder-estimator sequence, the remote control station designs a feedback controller. In this paper, we introduce a stochastic model for the lead vehicle in a platoon of vehicles considering the angle between a road surface and a horizontal plane as a stochastic process. The simulation results show that the inter-vehicle distance and the deviation from the desired inter-vehicle distance are well regulated.

  • PDF

A Study on the Teleoperation of the Unmanned Grounded Vehicle for Improving Telepresence (원격지 현장감을 향상시키기 위한 무인차량 원격조종에 관한 연구)

  • Lee, Tae-Gon;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.553-558
    • /
    • 2010
  • In this paper, we proposed a teleoperation scheme of unmanned grounded vehicle to improve telepresence. Especially, bilateral control architecture for transmitting realistic steering feeling to the remote driver is investigated. System architecture of the teleoperated remote vehicle is introduced with visual, auditory and kinesthetic haptic channel. Several bilateral control architectures are proposed for transmitting remote steering feeling, and subject tests are done to evaluate the performance. Position-force bilateral control architecture with returning torque compensation algorithm shows best performance.

Communication Sequence Determination for Lead Vehicle Control in a Platoon via Remote Control Station

  • Park, Jae-Weon;Fang, Tae-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.6-41
    • /
    • 2002
  • In this paper, we present a remote control strategy for vehicles moving in an intelligent Vehicle Highway System(IVHS). We study a method for optimal off-line scheduling of a limited communication channel that is used for lead vehicle control in a platoon. The deviated distance from the desired trajectory is used for defining a cost functional that measures the performance of the system with communication constraints in relation to the desired system without communication constraints. The optimal communication sequence is obtained by simulations.

  • PDF

A Design and Implementation of the remote control system of vehicle using the G-sensor (G센서를 이용한 차량원격제어시스템 설계 및 구현)

  • Song, Jong-Gun;Kwon, Doo-Wy;Do, Kyeong-Hoon;Jang, Won-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.135-138
    • /
    • 2009
  • G-Sensor is being used for controlling motion of smart-phone and robot. G-Sensor can control motion to several direction, because it is composed of X, Y, and Z axis and also can be used on many mobile-phone by using Wi-Fi communication and RS-232C communication on the Bluetooth module. In this research, we suggest the application that realize and develop visual-vehicle-remote-control-system by using mobile-phone with G-Sensor so that drivers can more easily remote control and manage their vehicle with mobile-phone in real-time visual.

  • PDF