• Title/Summary/Keyword: Vehicle Operating Speed

Search Result 250, Processing Time 0.032 seconds

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

A Study on the Development of an Economic Efficiency Model Considering Vehicle Operating Cost Properties of Signalized Intersections (신호교차로의 차량운행비용 특성을 고려한 경제성분석 모형개발)

  • Byeon, Eun-A;Kim, Yeong-Chan;An, So-Yeong;Go, Gwang-Deok;Yun, Su-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.199-206
    • /
    • 2009
  • In relation with economical efficiency analysis on investment evaluation of transportation system, among vehicle operating cost saving benefit that is applied to general preliminary assessment guidelines and investment evaluation guidelines, oil expense calculated data which concentrated and analyze on the relationship between oil consumption amount on running state and running speed. For uninterrupted flow which does not have stopped delay due to traffic signal, consideration for reduction benefit is possible due to the changes of running speed and travel time however, for interrupted flow which the stopping occurs due to signal control on actual signal intersection has no consideration for stopping delay time reduction and stopping rate improvement thus reflection of reality on improved effect analysis is difficult. Therefore, this research makes a framework to analyze benefits that reflects the features of signalized intersections by benefits associated with decrease of stopping delay time with existing research and developing vehicle operating cost calculation model formula. Vehicle operating cost has been redefined considering the stopping delay time by applying the oil consumption amount at idling and the economical benefit between conventional model and newly developed model when applied for the optimization of traffic signal system on the two roads in Seosan city has been analyzed comparative. While the importance of traffic system maintenance is being emphasized due to the increase of congested areas on roads, it is expected to assist in more realistic economical analysis which reflect the delay improvement through the presentation of an economic analysis model that considers the features of signalized intersections in signal optimization system improvements and effect analysis of congestion improvement projects`.

Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller (적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

Shift Control Strategy for Electric Controlled CVT Vehicle (전자 제어 CVT 차량의 변속제어전략)

  • 김동우;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.85-97
    • /
    • 2000
  • In this paper, static and dynamic shift control stategies of CVT speed ratio are suggested. For the static shift control, in order to operate engine on the optimal operating region, a fuzzy control logic is used. In the fuzzy logic, S- factor that is defined as a degree of sportiness is introduced. Simulation results show that the static shift control strategy based on the fuzzy logic selects the optimal operating point automatically between the economy and the sporty mode corresponding to the driver's desire and the driving condition. For the dynamic shift control strategy, a shift speed map is suggested which determines the shift sped as fast or slow based on Δi, the difference between the desired speed ratio id and the actual speed ratio i, and throttle opening. It is seen from the simulation results that the CVT shift speed is determined by the dynamic shift control strategy to provide appropriate performance and comfort for the driver's demand and driving condition. Additionally, experiments are performed to investigate the dynamic performance of the shift speed for the lift foot up. From the experimental results, it is found that improved shift feeling can be obtained by the dynamic shift control strategy when lift foot up occurs.

  • PDF

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.

Comparison of Waterjet Performance for Tracked Vehicle according to the Variation of Impeller Diameter (궤도 차량용 물 분사 추진 장치의 임펠러 직경 변화에 따른 성능 비교)

  • Kim, Hyun-Yul;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.21-27
    • /
    • 2004
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious military vehicles because of a good maneuverability at low speed, good operating ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. Especially, compact design is important for the tracked-vehicle because of buoyancy in water and available space inside the tracked vehicle. The experiment is parametrically performed for various impeller diameters for more compact design. The experimental results are analyzed according to the ITTC 1996 standard analysis method as well as the conventional propulsive factor analysis method. The full-scale effective and delivered power of the tracked-vehicle are evaluated according to the variation of impeller diameter. This paper emphasized the effect of impeller diameter on the performance of waterjet system.

A Study of Effectiveness Analysis for Wide-Area Emergency Vehicle Preemption System : Targeting on Gyeonggi-Do (광역 긴급차량 우선신호시스템 효과분석 연구: 경기도를 중심으로)

  • Min Kim;Jae Seong Hwang;Choul Ki Lee;Byeong Kwon Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • This study conducted an operational evaluation of an emergency vehicle preemption system that can be operated as a wide-area unit beyond the boundaries of local governments. Analyzed the speed reduction rate of emergency vehicle dispatch data and traffic speed data to analyze the speed reduction rate of emergency vehicles operating in a wide area and region. In Goyang City, local dispatches were reduced by 50.8% and regional dispatches by 55.8%, while in Paju City, local dispatches were reduced by 55.1% and regional dispatches by 62.5%. The wide-area emergency vehicle preemption system proved to be effective when emergency vehicles were dispatched outside of local boundaries, such as confirming that there were many dispatches from Paju-si to Goyang-si when there were no large hospitals nearby. This study aims to help spread the wide-area emergency vehicle preemption system. Translated with DeepL.com (free version)

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Evaluation of Critical Speed for Active Steering Bogie Prototype (능동형 시제 조향대차의 임계속도 평가)

  • Hur, Hyun Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • Critical speed analysis was conducted for a active steering bogie prototype, developed to improve the curving performance of railway vehicles. The critical speed for the design concept was about 169.2k m/h. To validate the analysis result, we performed a critical speed test for the prototype bogie using a roller-rig tester. The test results showed that the critical speed for the prototype bogie was about 165 km/h. From the analysis and test results, The critical speed for the prototype bogie was determined to be 165 km/h. Considering the maximum operating speed of the test vehicle is 100 km/h, the prototype bogie is considered stable.

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.