• Title/Summary/Keyword: Vehicle License Plate Recognition

Search Result 120, Processing Time 0.021 seconds

Vehicle License Plate Recognition System using SSD-Mobilenet and ResNet for Mobile Device (SSD-Mobilenet과 ResNet을 이용한 모바일 기기용 자동차 번호판 인식시스템)

  • Kim, Woonki;Dehghan, Fatemeh;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • This paper proposes a vehicle license plate recognition system using light weight deep learning models without high-end server. The proposed license plate recognition system consists of 3 steps: [license plate detection]-[character area segmentation]-[character recognition]. SSD-Mobilenet was used for license plate detection, ResNet with localization was used for character area segmentation, ResNet was used for character recognition. Experiemnts using Samsung Galaxy S7 and LG Q9, accuracy showed 85.3% accuracy and around 1.1 second running time.

Design of a Korean Character Vehicle License Plate Recognition System (퍼지 ARTMAP에 의한 한글 차량 번호판 인식 시스템 설계)

  • Xing, Xiong;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.262-266
    • /
    • 2010
  • Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.

A study on license plate area extraction of labeling the vehicle images (레이블링된 차량영상에서 번호판 영역 추출을 위한 기법 연구)

  • Park, Jong-dae;Park, Byeong-ho;Choi, Yong-seok;Seong, Hyoen-kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.408-410
    • /
    • 2014
  • In this paper a license plate area extraction of labeling the vehicle images is proposed. Studies on license plate recognition systems have largely been conducted and there is a tendency of increasing license plate recognition rates. In this paper a license plate region is extracted from an image labeling for the region of interest and research on technology for labeling sample image using the Otsu algorithm to binary.

  • PDF

The FE-MCBP for Recognition of the Tilted New-Type Vehicle License Plate (기울어진 신규차량번호판 인식을 위한 FE-MCBP)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.73-81
    • /
    • 2007
  • This paper presents how to recognize the new-type vehicle license plate using multi-link recognizer after extract the features from characters. In order to assist this task, this paper proposed FE-MCBP to recognize each character that got through image preprocess, extract range of vehicle license plate and extract process of each character. FE-MCBP is the recognizer based on the features of the character, The recognizer is employed to identify the new-type vehicle licence plates which have both the hangul and the arabic numeral characters. And its recognition rate is improved 9.7 percent than the back propagation recognizer before. Also it makes use of extract of linear component and region coordinate generation technology to normalize a image of the tilted vehicle license plate. The recognition system of the new-type vehicle license plate make possible recognize a image of the tilted vehicle license plate when using this system. Also, this system can recognize the tilted or imperfect vehicle licence plates.

  • PDF

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition (차량 규격과 특징 패턴을 이용한 자동차 번호판 추출)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.339-345
    • /
    • 2002
  • Extracting of car licens plate os important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images are distorted and the car license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.

Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition (차량 규격과 특징 패턴을 이용한 자동차번호판 추출)

  • 이종석;남기환;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.596-599
    • /
    • 2001
  • Extracting of car licens plate is important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images we distorted and the tar license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.

  • PDF

Vehicle License Plate Recognition System using DCT and LVQ (DCT와 LVQ를 이용한 차량번호판 인식 시스템)

  • 한수환
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.

  • PDF

Recognition of License Plate with Brightness and Tone of Color Data (명암과 색상 정보를 이용한 번호판 인식)

  • Lee, Seung-Su;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.528-531
    • /
    • 2003
  • Recognition of licence plate becomes a key issue to many traffic related application such as road traffic monitoring or parking lots access control. In this paper, the brightness, YIQ and HSI methods were used to locate a license. After the characters in license plate were extracted, template matching method was applied for character recognitions. To test the performance of the proposed algorithm, images of seventy vehicle were tested. The success rates for license plate and character recognition were approximately 99%, and 96%, respectively

  • PDF

The Development of a License Plate Recognition System using Template Matching Method in Embedded System (임베디드 시스템에서의 템플릿 매칭 기법을 이용한 번호판 인식 시스템 개발)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • The implementation of the recognition system of a vehicle license plate and the Linux OS environment which is built in SoC Embedded system and its test result are presented in this paper. In order to recognize a vehicle license plate, each character has to be extracted from the whole image of a license plate and the extracted image is revised for the template matching. Labeling technique and numerical features are used to detect the vehicle license plate. Each character in the license plate has coordinates. The extracted image is revised by comparison of the numerical coordinates and recognized through template matching method. The experimental results show that the license plate detection rate is 96%, and a character recognition rate is 73%, and a number recognition rate is 97% for about 300 license plate images. The average time of the recognition in the embedded board is 0.66 sec.