• 제목/요약/키워드: Vehicle Dynamics Model

검색결과 495건 처리시간 0.104초

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어 (Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties)

  • 황진권;송철기
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

A System Dynamics Model of Alternative Fuel Vehicles Market under the Network Effect

  • Kwon, Tae-Hyeong
    • 한국시스템다이내믹스연구
    • /
    • 제8권2호
    • /
    • pp.5-23
    • /
    • 2007
  • According to the system dynamics model of this study, if there is a significant network effect on vehicle operating costs, it is difficult to achieve the shift to AFV even in the long term without a policy intervention because the car market is locked in to the current structure. Network effect can be caused by an increasing return to scale in fuel supply sector as well as in maintenance service sector. It is also related to the fact that the reliability and awareness of consumers on new products increases with the growth of the market share of the new products. There are several possible policy options to break the 'locked in' structure of car market, such as subsidy on vehicle price (capital cost), subsidy on fuel (operating cost) and niche management policy. Combined policy options would be more effective than relying on a single policy option to increase the market share of AFV.

  • PDF

유연체 동력학 모델을 이용한 차량의 동응력-시간선도 계산 (Calculation of Dynamic Stress-Time History for a Vehicle Using Flexible Body Dynamics Model)

  • 박찬종;임홍재;박태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.702-707
    • /
    • 2000
  • Under the rapid change of a new vehicle model, it is necessary to develop a durability analysis technique using computer simulation. In order to do this. reliable dynamic stress-time history for the vehicle components must be calculated on various road conditions. In this paper, a full vehicle simulation model which is composed of flexible frame and chassis components is proposed and verified its reliability from the comparison with field test data. Finally, dynamic stress-time history on the rear chassis components is predicted with hybrid and modal superposition method.

  • PDF

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • 제7권1호
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Manta형 무인잠수정의 6자유도 운동 수학모델 및 조종응답 특성 (Mathematical Model for Dynamics of Manta-type Unmanned Undersea Vehicle with Six Degrees of Freedom and Characteristics of Manoeuvrability Response)

  • 손경호;이승건;하승필
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.399-413
    • /
    • 2006
  • Mathematical model for coupled motions of Manta-type Unmanned Undersea Vehicle(UUV) moving with six degrees of freedom, is formulated. Furthermore, a calculation method for estimating the linear hydrodynamic derivatives acting on UUV, is proposed, and some of the estimated linear hydrodynamic derivatives are compared with results of captive model experiment. Based on linear dynamic model of UUV, a study was made to examine dynamic stability and turning ability in horizontal plane. And directional stability and required elevation rudder angles for neutrally operating in vertical plane, are also discussed.

A Study on the Modelling and Control Method of an Anti - lock Brake System

  • Ki, Lim-Chul;Hoon, Song-Jeong;Suck, Boo-Kwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.112-112
    • /
    • 2001
  • An Anti-lock Brake System ABS is developed to increase the stability of vehicle and to reduce the stopping distance when braking manoeuvres by measuring the wheel and vehicle speed. An ABS mathematical model which describes the dynamics of vehicle and calculate the stopping distance, is explained in this paper. To proceed this study, a mathematical model is produced with simulink software package. Although the model considered here is relatively simple, it retains the essential dynamics of the system. The results are evaluated at the various driving or road conditions. The results from mathematical model show that ABS reduces the stopping distance at the various road conditions. This mathematical model could be ...

  • PDF

차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델 (Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7)

  • 손정현;유완석;김두현
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

등가답면구배를 목적함수로 하는 차륜답면형상 설계기법 (Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity)

  • 허현무;유원희;박준혁;김민수
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.

차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구 (A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles)

  • 권성진
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.