• Title/Summary/Keyword: Vehicle Driving Load

Search Result 195, Processing Time 0.031 seconds

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • Lee, Se-Jin;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.653-658
    • /
    • 2000
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. The driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The Effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that the control with driving load estimation can provide ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only variation of driving load but also the modeling errors.

  • PDF

Observer Based Estimation of Driving Resistance Load for Vehicle Longitudinal Motion Control

  • Kim, Duk-Ho;Shin, Byung-Kwan;Kyongsu Yi;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.185-188
    • /
    • 1999
  • An estimation algorithm for vehicle driving load has been proposed in this paper. Driving load is an important factor in a vehicle's longitudinal motion control. An approach using an observer is introduced to estimate driving load based on inexpensive RPM sensors currently being used in production vehicles. Also, a torque estimation technique using nonlinear characteristic functions has been incorporated in this estimation algorithm. Using a nonlinear full vehicle simulation model, we study the effect of the driving load on longitudinal vehicle motion, and the performance of the estimation algorithm has been evaluated. The proposed estimation algorithm has good performance and robustness over uncertainties in the system parameters. An accurate estimate of the driving load can be very helpful in the development of advance vehicle control systems such as intelligent cruise control systems, CW/CA systems and smooth shift control systems.

  • PDF

A Computer Simulation of a Driving Vehicle Performance using an Set of Engine Part Load Performance and a Transmission Shift Map (엔진 부분 부하 성능 및 변속기 시프트맵을 이용한 차량주행성능 컴퓨터 시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.64-68
    • /
    • 2014
  • A driving vehicle performance which is driven by FTP-75 mode was simulated by computer. Throttle valve position, engine speed, air mass flow rate, fuel consumption et al. were computer simulated. A set of engine part load performance data, automatic transmission shift map and vehicle specifications were used for the computer simulation. Throttle valve position, engine speed, air mass flow rate et al. measured for evaluating the computer simulation results by driving the vehicle with FTP-75 mode on a chassis dynamometer. GT-Power$^{(R)}$ software was used for the computer simulation of the driving vehicle performance. Experimental fuel consumption rate was measured by using an ECU HILS fuel injection system. The experimental data and simulation results were compared. The computer simulation of the driving vehicle performance predicts the measured data well comparatively.

Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque (실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발)

  • Son, Seungwan;Kim, Kiyoung;Cha, Suk Won;Lim, Won Sik;Kim, Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump (대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석)

  • Kim, J.Y.;Kim, H.S.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

A Study on the Factors that Influence Jack Knife Phenomenon of Articulated Vehicles (연결(連結) 차량(車輛)의 재크나이프 현상에 영향(影響)을 미치는 인자(因子)인자에 대한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • Vehicular safety and occupant injury have been of considerable interest to the public. The dynamic response of an articulated vehicle is different from that of single body vehicle due to its geometric and inertia properties. Articulated vehicles have the tendency to jackknife if they lose driving safety. Influence of factors for driving safety of an articulated vehicle(Tractor-Semitrailers) has been analysed by the EDVTS, a kinetic analysis program for an articulated vehicle. EDVTS permits an analyst to investigate the effect of many variables in a short period of time, and enables to obtain an accurate explanation of driving safety. The factors used in the analysis include the load, friction coefficient, tire flat, increase of braking force, and trailer geometry. Based on the results, the articulation angle and driving safety were influenced remarkably by the load, coefficient of friction, increase of braking force. However, trailer geometry, such as length and width, did not affect articulation angle and driving safety

  • PDF